В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
димкаа2
димкаа2
08.12.2022 01:58 •  Геометрия

Гипотенуза равнобедренного прямоугольного треугольника лежит в плоскости альфа, а катет наклонён к этой плоскости под углом 30 градусов. найдите угол между плоскостью альфа и плоскостью треугольника.

Показать ответ
Ответ:
KotyaFila
KotyaFila
11.06.2020 12:22
АВ - гипотенуза равнобедренного прямоугольного треугольника,
АС = СВ - катеты.

Проведем CO⊥α, тогда ОА - проекция катета СА на плоскость α,
∠САО = 30°.

Пусть Н - середина АВ. Тогда СН - медиана и высота равнобедренного треугольника, т.е.
СН⊥АВ,
ОН - проекция СН на плоскость α, значит и ОН⊥АВ по теореме о трех перпендикулярах.
Значит ∠СНО - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
∠СНО - искомый.

Обозначим катеты а.
АВ = а√2 как гипотенуза равнобедренного прямоугольного треугольника.
СН = АВ/2 = а√2/2 так как медиана, проведенная к гипотенузе, равна ее половине.

ΔСАО: ∠СОА = 90°, СО = АС/2 = а/2 как катет, лежащий напротив угла в 30°.

ΔСНО: ∠СОН = 90°,
             sin∠CHO = CO / CH = (a/2) / (a√2/2) = 1/√2 = √2/2

∠CHO = 45°
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота