Прямоугольные треугольники DAM и BAN равны по гипотенузе и острому углу (гипотенузы DA и АВ - стороны ромба, ∠D = ∠B как противоположные углы ромба). Следовательно, ∠DAM = ∠BAN, а так как диагональ АС ромба делит ∠DAB пополам (свойство), то ∠MAC = <NAC = 30°. Тогда в прямоугольных треугольниках MAC и NAC ∠АСМ = ∠ACN = 60° (по сумме острых углов прямоугольного треугольника). Тогда угол ∠С ромба равен 120°, а ∠D = 60° (по сумме углов ромба, прилегающих к одной стороне).
В прямоугольном треугольнике DAM ∠ADM = 60°, ∠DAM=30°.
Против угла 30° лежит катет DM = 5 дм. Тогда гипотенуза DA (сторона ромба) равна 10 дм, а периметр ромба равен
Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
Pabcd = 40 дм.
Объяснение:
Прямоугольные треугольники DAM и BAN равны по гипотенузе и острому углу (гипотенузы DA и АВ - стороны ромба, ∠D = ∠B как противоположные углы ромба). Следовательно, ∠DAM = ∠BAN, а так как диагональ АС ромба делит ∠DAB пополам (свойство), то ∠MAC = <NAC = 30°. Тогда в прямоугольных треугольниках MAC и NAC ∠АСМ = ∠ACN = 60° (по сумме острых углов прямоугольного треугольника). Тогда угол ∠С ромба равен 120°, а ∠D = 60° (по сумме углов ромба, прилегающих к одной стороне).
В прямоугольном треугольнике DAM ∠ADM = 60°, ∠DAM=30°.
Против угла 30° лежит катет DM = 5 дм. Тогда гипотенуза DA (сторона ромба) равна 10 дм, а периметр ромба равен
10·4 = 40 дм.
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.