1. 180-141=39 градусов (т.к. смежные углы)
39=39
накрест лежащие углы равны при пересечении двух прямы d и e секущей k, поэтому прямые d и e параллельны
2. треугольники EOF и KOL равны по 1 признаку равенства треугольников (EO=LO, FO=KO, углы между ними равны, т.к. вертикальные)
из этого следует угол EFK = углу FKL , эти углы являются накрест лежащими при пересечении двух прямых секущей FK, поэтому EF и KL параллельны
3. соответственные углы 1 и 2 равны, поэтому a и b параллельны
угол 2 является односторонним с углом 3, потому что вертикальные углы равны
так как сумма односторонних углов 2 и 3 = 180 градусов, то b и c параллельны
Так как a и b параллельны, b и c параллельны, то a и c параллельны
Пусть m - прямая, проходящая через точку А, и k - прямая, проходящая через точку В.
Через две параллельные прямые проходит единственная плоскость.
По условию k║m, значит эти прямые лежат в одной плоскости α.
А∈m, m∈α, ⇒ A∈α
B∈k, k∈α, ⇒ B∈α.
Пусть М - точка пересечения прямых m и а, К - точка пересечения прямых k и а.
Тогда точки К и М также лежат в плоскости α.
По аксиоме: если две точки прямой лежат в плоскости, то и все точки прямой лежат в этой плоскости,
значит а∈α.
Итак, точки А, В и прямая а лежат в одной плоскости.
1. 180-141=39 градусов (т.к. смежные углы)
39=39
накрест лежащие углы равны при пересечении двух прямы d и e секущей k, поэтому прямые d и e параллельны
2. треугольники EOF и KOL равны по 1 признаку равенства треугольников (EO=LO, FO=KO, углы между ними равны, т.к. вертикальные)
из этого следует угол EFK = углу FKL , эти углы являются накрест лежащими при пересечении двух прямых секущей FK, поэтому EF и KL параллельны
3. соответственные углы 1 и 2 равны, поэтому a и b параллельны
угол 2 является односторонним с углом 3, потому что вертикальные углы равны
так как сумма односторонних углов 2 и 3 = 180 градусов, то b и c параллельны
Так как a и b параллельны, b и c параллельны, то a и c параллельны
Пусть m - прямая, проходящая через точку А, и k - прямая, проходящая через точку В.
Через две параллельные прямые проходит единственная плоскость.
По условию k║m, значит эти прямые лежат в одной плоскости α.
А∈m, m∈α, ⇒ A∈α
B∈k, k∈α, ⇒ B∈α.
Пусть М - точка пересечения прямых m и а, К - точка пересечения прямых k и а.
Тогда точки К и М также лежат в плоскости α.
По аксиоме: если две точки прямой лежат в плоскости, то и все точки прямой лежат в этой плоскости,
значит а∈α.
Итак, точки А, В и прямая а лежат в одной плоскости.