Трапеция равнобокая, противоположные углы в сумме дают π По теореме косинусов для треугольника ниже диагонали z² = (2x)² + (2x)² - 2*2x*2x*cos(β) z² = 8x² - 8x²*cos(β) По теореме косинусов для треугольника выше диагонали z² = (2x)² + x² - 2*2x*x*cos(π-β) z² = 5x² + 4x²*cos(β) --- 8x² - 8x²*cos(β) = 5x² + 4x²*cos(β) 3x² = 12x²*cos(β) 3 = 12*cos(β) 1 = 4*cos(β) cos(β) = 1/4 sin(β) = √(1-cos²(β)) = √(1-1/16) = √(15/16) = √15/4 По теореме синусов, для треугольника ниже диагонали, R - разиус описанной окружности, причём окружность одна и та же и для трапеции, и для каждого из двух рассматриваемых треугольников z/sin(β) = 2R z/(√15/4) = 4*8 z = 4√15 см Это ответ.
По теореме косинусов для треугольника ниже диагонали
z² = (2x)² + (2x)² - 2*2x*2x*cos(β)
z² = 8x² - 8x²*cos(β)
По теореме косинусов для треугольника выше диагонали
z² = (2x)² + x² - 2*2x*x*cos(π-β)
z² = 5x² + 4x²*cos(β)
---
8x² - 8x²*cos(β) = 5x² + 4x²*cos(β)
3x² = 12x²*cos(β)
3 = 12*cos(β)
1 = 4*cos(β)
cos(β) = 1/4
sin(β) = √(1-cos²(β)) = √(1-1/16) = √(15/16) = √15/4
По теореме синусов, для треугольника ниже диагонали, R - разиус описанной окружности, причём окружность одна и та же и для трапеции, и для каждого из двух рассматриваемых треугольников
z/sin(β) = 2R
z/(√15/4) = 4*8
z = 4√15 см
Это ответ.
в = ВД
l₁ = ЕН
l₂ = ХТ
ЕТ - средняя линия треугольника АВС
ЕТ = а/2
Аналогично
ХН = а/2
ТН = ЕХ = в/2
Эти среднии линии параллельны диагоналям и углы между средними линиями совпадают с углами между диагоналями, меньший 45° и больший 135°
По теореме косинусов для треугольника ЕТН
ЕН² = ЕТ² + ТН² - 2*ЕТ*ТН*cos(135°)
l₁² = (a/2)² + (b/2)² + 2*(a/2)*(b/2)*cos(45°)
l₁² = a²/4 + b²/4 + a*b/(2√2)
l₁² = 1/4(a² + b² + a*b√2)
l₁ = 1/2√(a² + b² + a*b√2)
аналогичное уравнение для треугольника ЕХТ
l₂² = (a/2)² + (b/2)² - 2*(a/2)*(b/2)*cos(45°)
l₂ = 1/2√(a² + b² - a*b√2)