In Orse. MAX
О-о задача 7. Побудуйте прямокутні трикутник за
rinorezy ra katerom.
Pese's says, Hexait дано два відрізки завдовжки с ib,
причому оке (рис. 322, а). Оскільки гіпотенуза більша аа
кarer. o rinorenуаа шуканого трикутника дорівнює біль-
wony a anix sixpiakin, a rarer меншому. Отэке, треба
побудувати прямокутний трикутник ABC, у якому 2C 90°,
AB, AC=.
Известно, что только в прямоугольном тр-ке центр описанной окружности лежит на одной из его сторон - гипотенузе, причём на её середине, так как он равноудалён от вершин треугольника.
Рассмотрим подробно.
Тр-ки АВР и АРС равнобедренные, т.к. РМ⊥АВ и РК⊥АС, ВМ=АМ и АК=КС, значит РМ и РК - высоты и медианы (признак равнобедренности тр-ка).
РМ и РК - биссектрисы тр-ков АВР и АРС, углы ВРА и АРС - смежные, значит РМ⊥РК.
Углы между соответственно перпендикулярными прямыми равны.
РМ⊥АВ, РК⊥АС, РМ⊥РК, значит АВ⊥АС ⇒ ∠А=90°.
Доказано.