1) ΔАВС~ΔА1В1С1, АВ и А1В1 сходственные стороны треугольников, АВ:А1В1=3:5, А1В1=25 см; А 1С 1=30 см; В 1С 1=35 см. Найдите стороны ΔАВС. коэффициент подобия k = 3/5 AB = k*A₁B₁ = 3/5*25 = 15 см АС = k*А₁С₁ = 3/5*30 = 18 см BC = k*B₁C₁ = 3/5*35 = 21 см 2) ΔMNK~ΔM1N1K1 , M 1N 1=20 см, M 1K 1=45 см, N 1K 1=25см. Найдите периметр ΔMNK . Вычислите площадь ΔMNK, если известно, что площадь ΔM1N1K1 равна 180 см2. ошибка в условии M₁N₁ + N₁K₁ = M₁K₁, это не треугольник 3) Площади подобных треугольников равны 100дм2 и 25 дм2, сумма их периметров равна 117 дм. Найдите периметры обоих треугольников. Пусть коэффициент подобия большего треугольника к меньшему равен k Тогда их площади относятся как k² k² = 100/25 = 4 k = 2 Пусть периметр меньшего P Периметр большего K*P P+k*P = 117 P(1+2) = 117 P = 117/3 = 39 дм и периметр большего k*P = 2*39 = 78 дм
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
коэффициент подобия
k = 3/5
AB = k*A₁B₁ = 3/5*25 = 15 см
АС = k*А₁С₁ = 3/5*30 = 18 см
BC = k*B₁C₁ = 3/5*35 = 21 см
2) ΔMNK~ΔM1N1K1 , M 1N 1=20 см, M 1K 1=45 см, N 1K 1=25см. Найдите периметр ΔMNK . Вычислите площадь ΔMNK, если известно, что площадь ΔM1N1K1 равна 180 см2.
ошибка в условии M₁N₁ + N₁K₁ = M₁K₁, это не треугольник
3) Площади подобных треугольников равны 100дм2 и 25 дм2, сумма их периметров равна 117 дм. Найдите периметры обоих треугольников.
Пусть коэффициент подобия большего треугольника к меньшему равен k
Тогда их площади относятся как k²
k² = 100/25 = 4
k = 2
Пусть периметр меньшего P
Периметр большего K*P
P+k*P = 117
P(1+2) = 117
P = 117/3 = 39 дм
и периметр большего
k*P = 2*39 = 78 дм
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
Радиус 5/2=2,5 см.
приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.