в первой, АБС равнобедренный, значит медиана также биссектриса и высота, тогда угол АКБ равен 90°
FED тоже равнобедренный, значит мд тоже высота и значит угол fmd тоже прямой
тогда смежный с fmd угол( там где FMb) =90°, так как сумма смежных углов 180°.
угол FMb и АКB равны и являются соответственными при прямых BC и Db и секущей AE, а значит прямые параллельны
во второй, m||n, так как односторонние углы при секущей а равны(90°), а прямая n||k, так как равны соответвенные углы при секущей b. раз m||n, n||k, то m||k
Объяснение:
1. Найдите градусную меру угла С треугольника АВС, если А = 120, В = 40.
Решение.
180°-(120°+40°)=180°-160°=20°.
***
2. В треугольнике АВС угол С прямой, А = 30, АВ = 16 см. Найдите ВС.
ВС - катет. АВ -- гипотенуза. Угол А=30°.
Катет, лежащий против угла в 30° равен 1/2 гипотенузы. ВС= 1/2 * 16 = 8 см.
***
3. В треугольнике ABC AC = BC. Внешний угол при вершине B равен 125°. Найдите угол C.
Внешний и внутренний углы - смежные их сумма равна 180°.
Угол В= 180° - 125°= 55°;
АВ - основание равнобедренного треугольника. Значит угол А равен углу В и равен 55°.
Угол при вершине (угол С) равен 180°-2*55°=180°-110°=70°.
в первой, АБС равнобедренный, значит медиана также биссектриса и высота, тогда угол АКБ равен 90°
FED тоже равнобедренный, значит мд тоже высота и значит угол fmd тоже прямой
тогда смежный с fmd угол( там где FMb) =90°, так как сумма смежных углов 180°.
угол FMb и АКB равны и являются соответственными при прямых BC и Db и секущей AE, а значит прямые параллельны
во второй, m||n, так как односторонние углы при секущей а равны(90°), а прямая n||k, так как равны соответвенные углы при секущей b. раз m||n, n||k, то m||k