Из точки а к плоскости а проведены наклонные ав и ас, длины которых равны 20 см и 40 см соответственно. найдите расстояние от точки а до плоскости а, если проекции наклонных относятся как 9: 16.
Через одну точку можно провести не более одной парямой. параллельной другой прямой. Так как прямая б по условия задачи паралельная прямой а, а точка А, через которую она проведена, принадлежит плоскости а, значит, прямая б принадлежит плоскости а.
Объяснение:
А чтобы всё это хозяйство не тупо списать, а понять, нарисуй чертежик - ну и пару страниц учебника назад отлистай - там эта теорема (или аксиома? ) изложена ;)
Успехов! Геометрия - это не страшно. Главное - не упускать на начальном этапе. Упустишь сейчас - потом пептец будет, это да. Так что, пока недалеко ушли - лови.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Через одну точку можно провести не более одной парямой. параллельной другой прямой. Так как прямая б по условия задачи паралельная прямой а, а точка А, через которую она проведена, принадлежит плоскости а, значит, прямая б принадлежит плоскости а.
Объяснение:
А чтобы всё это хозяйство не тупо списать, а понять, нарисуй чертежик - ну и пару страниц учебника назад отлистай - там эта теорема (или аксиома? ) изложена ;)
Успехов! Геометрия - это не страшно. Главное - не упускать на начальном этапе. Упустишь сейчас - потом пептец будет, это да. Так что, пока недалеко ушли - лови.
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.