Из точки a, лежащей вне плоскости α, проведены на плоскость перпендикуляр ab длиной 8 см и наклонная ac, которая на 4 см длиннее своей проекции. найдите длину наклонной.
Проведем отрезок МК║АD. Так как М - середина АВ, МК- средняя линия трапеции. МК=(6+10):2=8
Примем коэффициент отношения СN:ND равным а.
Тогда СD=3a+5a=8a,
CK=KD=8a:2=4a, из чего следует NK=a.
Опустим высоту СН на АD.
Высота, проведенная из тупого угла равнобедренной трапеции, делит большее основание на отрезки, один из которых равен полуразности оснований, другой – их полусумме. =>
DH=(10-6):2=2, AH=MN=(10+6):2=8
МК║AD, СD – секущая => ∠CKM=∠CDA.
Прямоугольные ∆ СDH~∆ MKN по острому углу.
Из подобия следует: Отношение катетов к гипотенузе подобных прямоугольных треугольников равно.
NK:MK=HD:СD
a:8=2:8a
8a²=16 =>
a=√2 и СD=8√2
По т.Пифагора
CH=√(CD²-HD²)=√(128-4)=2√31
Площадь трапеции равна произведению высоты на полусумму оснований:
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Проведем отрезок МК║АD. Так как М - середина АВ, МК- средняя линия трапеции. МК=(6+10):2=8
Примем коэффициент отношения СN:ND равным а.
Тогда СD=3a+5a=8a,
CK=KD=8a:2=4a, из чего следует NK=a.
Опустим высоту СН на АD.
Высота, проведенная из тупого угла равнобедренной трапеции, делит большее основание на отрезки, один из которых равен полуразности оснований, другой – их полусумме. =>
DH=(10-6):2=2, AH=MN=(10+6):2=8
МК║AD, СD – секущая => ∠CKM=∠CDA.
Прямоугольные ∆ СDH~∆ MKN по острому углу.
Из подобия следует: Отношение катетов к гипотенузе подобных прямоугольных треугольников равно.
NK:MK=HD:СD
a:8=2:8a
8a²=16 =>
a=√2 и СD=8√2
По т.Пифагора
CH=√(CD²-HD²)=√(128-4)=2√31
Площадь трапеции равна произведению высоты на полусумму оснований:
S=(2√31)•8=16√31 (ед. площади)
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см