Из условия известно, что в треугольнике ABC стороны АС и BC равны. Внешний угол при вершине В равен 100°. Для того, чтобы найти угол С давайте рассуждать.
Первое, что мы можем сделать — это найти угол B. В этом нам свойство внешних углов. Сумма смежных углов равна 180°.
180° - 100° = 80°.
Из условия известно, что стороны AC и BC равны (треугольник равнобедренный), то и углы A и B равны.
То есть угол А равен углу В и равен 80°.
Далее используем теорему о сумме углов треугольника.
1) по особому свойству ромба - диагонали биссектрисы своих углов => угол EKA = 60°
2) достроим вторую диагональ. по особому свойству ромба - диагонали ромба взаимоперпендикулярны т.е. равны 90° => в прямоугольном треугольнике OEK (пусть точка пересечения диагоналей - т. О) второй острый угол равен 90-60=30°
3) по свойству параллелограмма (ромб - частый случай параллелограмма) диагонали в точке пересечения делятся пополам => OK =34:2=17
4) катет , лежащий против угла 30° ( угол KEO и катет OK) равен половине гипотензу, т.е. EK = 2OK = 17*2 = 34 => P AEKH = 34*4 = 136
Из условия известно, что в треугольнике ABC стороны АС и BC равны. Внешний угол при вершине В равен 100°. Для того, чтобы найти угол С давайте рассуждать.
Первое, что мы можем сделать — это найти угол B. В этом нам свойство внешних углов. Сумма смежных углов равна 180°.
180° - 100° = 80°.
Из условия известно, что стороны AC и BC равны (треугольник равнобедренный), то и углы A и B равны.
То есть угол А равен углу В и равен 80°.
Далее используем теорему о сумме углов треугольника.
180° - 80° * 2 = 20°, итак, угол C = 20°.
ответ: угол С равен 20°.
136
Объяснение:
1) по особому свойству ромба - диагонали биссектрисы своих углов => угол EKA = 60°
2) достроим вторую диагональ. по особому свойству ромба - диагонали ромба взаимоперпендикулярны т.е. равны 90° => в прямоугольном треугольнике OEK (пусть точка пересечения диагоналей - т. О) второй острый угол равен 90-60=30°
3) по свойству параллелограмма (ромб - частый случай параллелограмма) диагонали в точке пересечения делятся пополам => OK =34:2=17
4) катет , лежащий против угла 30° ( угол KEO и катет OK) равен половине гипотензу, т.е. EK = 2OK = 17*2 = 34 => P AEKH = 34*4 = 136