Из точки о в указанном направлении выходят лучи оа, ов, ос и оd. известно, что сумма углов аов и соd равна 180°. докажите, что биссектрисы углов аос и воd перпендикулярны.
Сделаем рисунок. Можно хорды нарисовать параллельными, т.к. расстояние от центра окружности до хорд и радиус заданы условием, поэтому, поэтому длина хорд не меняется от места их расположения. Расстояние от точки до прямой измеряют отрезком, перпендикулярным к ней. ⇒ углы СКО и АМО - прямые, а треугольники СКО и АМО - прямоугольные. Радиус окружности является их гипотенузой, а половина АВ=9 . Из треугольника АМО найдем радиус r. Треугольник - египетский, т.к. отношение катетов 3:4, следовательно, радус равен 15 ( можно проверить по т. Пифагора). Треугольники СКО и АМО равны по гипотенузе и меньшему катету, из чего следует, что больший катет второго треугольника равен 12. СD=2 СК=24. ------- bzs*
Центр окружности, описанной вокруг правильного треугольника, является и центром окружности, вписанной в правильный шестиугольник. Радиус R окружности, описанной вокруг правильного треугольника, равен радиусу окружности, вписанной в правильный шестиугольник. Правильный шестиугольник состоит из 6 равных правильных треугольников, высотой которых является апофема шестиугольника, т.е. радиус вписанной окружности. Площадь каждого из этих треугольников можно найти по формуле площади правильного треугольника, выраженной через высоту. S₁=h²/√3, а площадь всего шестиугольника в 6 раз больше. Решение: Сторона а данного треугольника равна Р:3 а=(6√3):3=2√3 R=a/√3=2 Высота h (апофема шестиугольника) каждого треугольника, из которых состоит правильный шестиугольник, равна ОН - радиусу описанной вокруг правильного треугольника окружности. Площадь правильного треугольника, выраженная через его высоту S= h²/√3 S₁=4/√3 S₈=6*4/√3=24/√3 24/√3=(24*√3):(√3*√3)=8√3 (единиц площади)
Можно хорды нарисовать параллельными, т.к. расстояние от центра окружности до хорд и радиус заданы условием, поэтому, поэтому длина хорд не меняется от места их расположения.
Расстояние от точки до прямой измеряют отрезком, перпендикулярным к ней. ⇒
углы СКО и АМО - прямые, а треугольники СКО и АМО - прямоугольные. Радиус окружности является их гипотенузой, а половина АВ=9 .
Из треугольника АМО найдем радиус r.
Треугольник - египетский, т.к. отношение катетов 3:4, следовательно, радус равен 15 ( можно проверить по т. Пифагора).
Треугольники СКО и АМО равны по гипотенузе и меньшему катету, из чего следует, что больший катет второго треугольника равен 12.
СD=2 СК=24.
-------
bzs*
Радиус R окружности, описанной вокруг правильного треугольника, равен радиусу окружности, вписанной в правильный шестиугольник.
Правильный шестиугольник состоит из 6 равных правильных треугольников, высотой которых является апофема шестиугольника, т.е. радиус вписанной окружности.
Площадь каждого из этих треугольников можно найти по формуле площади правильного треугольника, выраженной через высоту.
S₁=h²/√3,
а площадь всего шестиугольника в 6 раз больше.
Решение:
Сторона а данного треугольника равна
Р:3
а=(6√3):3=2√3
R=a/√3=2
Высота h (апофема шестиугольника) каждого треугольника, из которых состоит правильный шестиугольник, равна ОН - радиусу описанной вокруг правильного треугольника окружности.
Площадь правильного треугольника, выраженная через его высоту
S= h²/√3
S₁=4/√3
S₈=6*4/√3=24/√3
24/√3=(24*√3):(√3*√3)=8√3 (единиц площади)