В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
ΔMNQ: по теореме косинусов:
MQ² = MN² + NQ² - 2 · MN · NQ · cos45°
MQ² = (3√2)² + 7² - 2 · 3√2 · 7 · √2/2 = 18 + 49 - 42 = 25
MQ = 5 см
ΔMNQ = ΔMNP по двум сторонам и углу между ними (NQ = NP по условию, MN - общая, ∠MNQ = ∠MNP по условию), ⇒
MP = MQ = 5 см
ΔMPQ: p = (5 + 5 + 8)/2 = 9 см
по формуле Герона:
Smpq = √(p · (p - MP) · (p - MQ) · (p - PQ))
Smpq = √(9 · (9 - 5) · (9 - 5) · (9 - 8)) = √(9 · 4 · 4 · 1) = 3 · 4 = 12 см²
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
ΔMNQ: по теореме косинусов:
MQ² = MN² + NQ² - 2 · MN · NQ · cos45°
MQ² = (3√2)² + 7² - 2 · 3√2 · 7 · √2/2 = 18 + 49 - 42 = 25
MQ = 5 см
ΔMNQ = ΔMNP по двум сторонам и углу между ними (NQ = NP по условию, MN - общая, ∠MNQ = ∠MNP по условию), ⇒
MP = MQ = 5 см
ΔMPQ: p = (5 + 5 + 8)/2 = 9 см
по формуле Герона:
Smpq = √(p · (p - MP) · (p - MQ) · (p - PQ))
Smpq = √(9 · (9 - 5) · (9 - 5) · (9 - 8)) = √(9 · 4 · 4 · 1) = 3 · 4 = 12 см²