Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Смотри ниже
Объяснение:
Треугольник АОС подобен треугольнику СОD по двум углам
∠АСО=∠BDO по условию
∠COA=∠BOD как вертикальные
Из подобия треугольников следует пропорциональность сторон
АС:BD=CO:OD ⇒ 5:10=CO:8 ⇒ 10CO=5·8 ⇒ CO=4
АС:BD=AO:OB ⇒ 5:10=6:OB ⇒ 5·OB=10·6 ⇒ OB=12
Противоположные углы параллелограмма равны
∠А=∠С
∠АКВ=∠ВЕС =90°
Треугольники АКВ и ВЕС подобны по двум углам
Из подобия треугольников следует пропорциональность сторон:
АК:СЕ=ВК:ВЕ
6:9=ВК:ВЕ
ВК=(2/3)·BE
Так как площадь параллелограмма равна произведению основания на высоту, то
DС·BE=AD·BK AD=BC
10·BE=BC·(2/3)·BE ( можно разделить обе части равенства на ВЕ)
10=(2/3)BC
ВС=15
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.