Объяснение:
18;. Проводим ОМ, для равнобедренного ∆QML - это медиана, биссектриса, высота;
=> ∆ОML - равносторонний, (OM=ML;
∆QEM;
По т Пифагора:
R^2-(R/2)^2=QE^2=(QL/2)^2
R√3/2=QL/2
R=QL/√3=6√3/√3
R=6
20;. ∆АВС-,
∆АОВ; АВ=8√5;, АО=ОВ=ОС=10;
22,. Правильный треугольник АВС
h=МК=МО+ОК; МО=R
∆OKE, <K=90; <OEK=30 (OE - медиана биссектриса высота <Е=60;) =>
ОК=МО/2;. ОК=3; МО=6
МК=6+3=9
24; даны все стороны
Через полурпериметр оприделяешь площадь ∆, из зависимости площади, R=ОМ; (R=4S/abc ) формулу уточни... Могу ошибаться. и сторон выражаешь R,
1) Рассмотрим ΔВСЕ.
∠С = 90°, ∠ВЕС = 60° по условию,
Тогда ∠ЕВС = 180°-90°-60° = 30°
Но, в прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы. Следовательно,
ВЕ = 2ЕС = 2 * 5 =10.
По теореме Пифагора,
ВЕ² = ЕС² + ВС², откуда
ВС² = ВЕ² - ЕС² = 10² - 5² = 100 - 25 = 75
ВС = √75
2) Рассмотрим ΔАВС
∠С =90°, ∠А =30° по условию
Катет, лежащий против угла в 30° равен половине гипотенузы:
ВС = ½АВ или
АВ = 2ВС = 2*√75
По теореме Пифагора:
АВ² = АС² + ВС², откуда
АС² = АВ² - ВС² = (2√75)² - (√75) = 4*75 - 75 = 3*75 = 225
АС = √225 = 15
Объяснение:
18;. Проводим ОМ, для равнобедренного ∆QML - это медиана, биссектриса, высота;
=> ∆ОML - равносторонний, (OM=ML;
∆QEM;
По т Пифагора:
R^2-(R/2)^2=QE^2=(QL/2)^2
R√3/2=QL/2
R=QL/√3=6√3/√3
R=6
20;. ∆АВС-,
∆АОВ; АВ=8√5;, АО=ОВ=ОС=10;
22,. Правильный треугольник АВС
h=МК=МО+ОК; МО=R
∆OKE, <K=90; <OEK=30 (OE - медиана биссектриса высота <Е=60;) =>
ОК=МО/2;. ОК=3; МО=6
МК=6+3=9
24; даны все стороны
Через полурпериметр оприделяешь площадь ∆, из зависимости площади, R=ОМ; (R=4S/abc ) формулу уточни... Могу ошибаться. и сторон выражаешь R,
Объяснение:
1) Рассмотрим ΔВСЕ.
∠С = 90°, ∠ВЕС = 60° по условию,
Тогда ∠ЕВС = 180°-90°-60° = 30°
Но, в прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы. Следовательно,
ВЕ = 2ЕС = 2 * 5 =10.
По теореме Пифагора,
ВЕ² = ЕС² + ВС², откуда
ВС² = ВЕ² - ЕС² = 10² - 5² = 100 - 25 = 75
ВС = √75
2) Рассмотрим ΔАВС
∠С =90°, ∠А =30° по условию
Катет, лежащий против угла в 30° равен половине гипотенузы:
ВС = ½АВ или
АВ = 2ВС = 2*√75
По теореме Пифагора:
АВ² = АС² + ВС², откуда
АС² = АВ² - ВС² = (2√75)² - (√75) = 4*75 - 75 = 3*75 = 225
АС = √225 = 15