abc - равнобедренный треугольник, тк ав=ас=6. значит углы асв и авс равны между собой. найдём их: abc=acb = (180 - bac)/2 = (180-60)/2 = 60. то есть все углы у треугольника по 60. значит он равносторонний , и все стороны равны 6.
пусть точка e - середина bc. be=ec=3. найдём ае, который является и высотой и меридианой по теореме пифагора (если я не ошибаюсь с названием): ае = корень из (ас^2 - be^2) = корень из (36-9) = корень из (25) = 5.
теперь рассмотри треугольник dae. он прямоугольный (ad также перпендикулярно плоскости треугольника, как и bp. то есть ad образует прямой угол с любым отрезком или прямой, которые принадлежат плоскости треугольника. угол dae - прямой.)
опять же по теореме пифагора найдём гиппотенузу de:
de= корень из (ae^2 + da^2) = корень из (25+9) = корень из (36) = 6
Если продлить боковые стороны до пересечения, то получится прямоугольный треугольник.
Если есть прямоугольная система координат XOY (внимание - буквой O обозначено начало кооринат, а не центр окружности! в применении к задаче - это точка пересечения AB и CD) и окружность, касающаяся оси OY и пресекающая ось OX в 2 точках, то её уравнение в самом общем виде (x - R)^2 + (y - a)^2 = R^2; точка (R, a) - центр.
=> x^2 - 2xR + (y-a)^2 = 0; при y = 0; x^2 - 2xR + a^2 = 0;
корни R - √(R^2 - a^2) и R + √(R^2 - a^2); пусть эти точки совпадают с точками A и B в условии, тогда при AB = 11
2√(R^2 - a^2) = 11;
Еще неиспользованное условие - AD/DC = 3/2; из того, что треугольники OBC и OAD подобны (я напоминаю, что буквой O я обозначил начало координат, а не центр окружности), ясно, что OA/OB = 3/2; или
(R + √(R^2 - a^2))/(R - √(R^2 - a^2)) = 3/2;
ну вот, по смыслу задача решилась, и ответ гораздо ближе, чем кажется :) потому что
abc - равнобедренный треугольник, тк ав=ас=6. значит углы асв и авс равны между собой. найдём их: abc=acb = (180 - bac)/2 = (180-60)/2 = 60. то есть все углы у треугольника по 60. значит он равносторонний , и все стороны равны 6.
пусть точка e - середина bc. be=ec=3. найдём ае, который является и высотой и меридианой по теореме пифагора (если я не ошибаюсь с названием): ае = корень из (ас^2 - be^2) = корень из (36-9) = корень из (25) = 5.
теперь рассмотри треугольник dae. он прямоугольный (ad также перпендикулярно плоскости треугольника, как и bp. то есть ad образует прямой угол с любым отрезком или прямой, которые принадлежат плоскости треугольника. угол dae - прямой.)
опять же по теореме пифагора найдём гиппотенузу de:
de= корень из (ae^2 + da^2) = корень из (25+9) = корень из (36) = 6
ответ: de=6
Если продлить боковые стороны до пересечения, то получится прямоугольный треугольник.
Если есть прямоугольная система координат XOY (внимание - буквой O обозначено начало кооринат, а не центр окружности! в применении к задаче - это точка пересечения AB и CD) и окружность, касающаяся оси OY и пресекающая ось OX в 2 точках, то её уравнение в самом общем виде (x - R)^2 + (y - a)^2 = R^2; точка (R, a) - центр.
=> x^2 - 2xR + (y-a)^2 = 0; при y = 0; x^2 - 2xR + a^2 = 0;
корни R - √(R^2 - a^2) и R + √(R^2 - a^2); пусть эти точки совпадают с точками A и B в условии, тогда при AB = 11
2√(R^2 - a^2) = 11;
Еще неиспользованное условие - AD/DC = 3/2; из того, что треугольники OBC и OAD подобны (я напоминаю, что буквой O я обозначил начало координат, а не центр окружности), ясно, что OA/OB = 3/2; или
(R + √(R^2 - a^2))/(R - √(R^2 - a^2)) = 3/2;
ну вот, по смыслу задача решилась, и ответ гораздо ближе, чем кажется :) потому что
простая подстановка дает
(R + 11/2)/(R - 11/2) = 3/2; => R = 55/2;