Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
Дано :
ΔАВС.
D ∈ AB.
E ∈ BC.
DE ║ AC.
DB = 2,8 см.
АВ = 14 см.
АС = 13 см.
Найти :
ED = ?
Краткое -
∢BDE = ∢BАC, т. к. соответственные углы.
∢BЕD = ∢BCA, т. к. соответственные углы ⇒ ΔABС ∼ ΔDBЕ.
DE = 2,6 см.
Полное -
∠В - общий для ΔАВС и ΔDBЕ.
Рассмотрим соответственные ∠BED и ∠ВСА при пересечении параллельных прямых ED и АС секущей ЕС.
При пересечении двух параллельных прямых секущей соответственные углы равны.Тогда -
∠BED = ∠ВСА.
Следовательно, ΔАВС ~ ΔDBЕ по двум равным углам (первый признак подобия треугольников).
В подобных треугольниках против равных углов лежат сходственные стороны.Тогда пара сторон -
АВ и BD - сходственные стороны
АС и DE - сходственные стороны.
Отношения сходственных сторон подобных треугольников равны.То есть -
ED = 2,6 см.
2,6 см.