Известно, что точки А и В находятся на единичной полуокружности. Если даны значения одной из координат этих точек, какие возможны значения другой координаты?
∠DAB=∠DBA=0,5*∠CAB=0,5*∠CBA (т.к. AE и BF биссектрисы и ∠CAB=∠CBA)
Пусть ∠DAB=∠DBA=x:
180°-100°=2x
80=2x
x=40
∠DAB=∠DBA=40°
40°=0,5*∠CAB=0,5*∠CBA
∠CAB=∠CBA=80°
∠ACB=180°-∠CAB-∠CBA=180°-80°-80°=20°
⸻⸻⸻⸻⸻⸻⸻⸻
2)
⸻⸻⸻⸻⸻⸻⸻⸻
∆ABO, ∆COD – прямоугольные (т.к. ∠BAO=∠CDO=90°)
AO=OD (т.к. O – середина отрезка AD)
Если бы AB=DC, то ∆ABO=∆COD (по двум катетам) ⇒ OB=OC, но точка B может находиться на любом расстоянии от точки A, и точка C может находиться на любом расстоянии от точки D, поэтому доказать это невозможно.
1) 80°, 80°, 20°
2) Доказать невозможно
Объяснение:
Сумма всех углов треугольника – 180°
Биссектриса делит угол пополам
1)⸻⸻⸻⸻⸻⸻⸻⸻
∠DAB=∠DBA=0,5*∠CAB=0,5*∠CBA (т.к. AE и BF биссектрисы и ∠CAB=∠CBA)
Пусть ∠DAB=∠DBA=x:
180°-100°=2x
80=2x
x=40
∠DAB=∠DBA=40°
40°=0,5*∠CAB=0,5*∠CBA
∠CAB=∠CBA=80°
∠ACB=180°-∠CAB-∠CBA=180°-80°-80°=20°
⸻⸻⸻⸻⸻⸻⸻⸻
2)⸻⸻⸻⸻⸻⸻⸻⸻
∆ABO, ∆COD – прямоугольные (т.к. ∠BAO=∠CDO=90°)
AO=OD (т.к. O – середина отрезка AD)
Если бы AB=DC, то ∆ABO=∆COD (по двум катетам) ⇒ OB=OC, но точка B может находиться на любом расстоянии от точки A, и точка C может находиться на любом расстоянии от точки D, поэтому доказать это невозможно.
⸻⸻⸻⸻⸻⸻⸻⸻
Відповідь:
Строятся оба треугольника в общем, одинаково.
Я нарисую в Пайнте примерный ход построения, но извините, длины сторон и величины углов точно нарисовать не получится.
1) Рисуем горизонтальную линию, на ней ставим точку.
2) Втыкаем в точку циркуль и раствором, равным второй стороне
(НЕ той, напротив которой заданный угол, а другой) делаем засечку.
В 1) задаче это будет c = 6, во 2 задаче это a = 3.
3) Из поставленной первой точки рисуем заданный угол, то есть проводим луч под нужным углом к горизонтальной прямой.
4) Из второй точки (из засечки) рисуем дугу, равную второй стороне.
5) Эта дуга пересекается с лучом, нарисованным в 3) пункте.
Получилась третья точка треугольника.
Всё!
У меня на рисунке получилось 2 решения этой задачи.
Слева заданные отрезки и угол, справа само построение.
Пояснення: