Какого радиуса должна быть клумба, что бы ее можно было обложить 40 кирпичами. Кирпичи укладываются так, как показано на рисунке. (Число π округлить до целых) https://shkola.nso.ru/media/uploads/schedulelesson/2021/04/25/ДЗ_окружность.docx сылка
Пусть х - длина другого катета, тогда использя свойство катета , лежащего против угла в 30 град и теоремы Пифагора, сот уравнение:
144+х2=4х2, где х2 - это х в квадрате
3х2=144
х2=48
х=4корня из 3 - другой катет.
Теперь рассмотрим маленький треугольник с тем же прямым углом и биссектрисой, которая является гипотенузой, используя тоже свойство катета и опять т Пифагора сост уравнение, в котором х - длина биссектрисы:
Биссектриса углов А и Д параллелограмма АВСД пересекаются в точке М, дежащий на стороне ВС. Луч ДМ пересекает прямую АВ в точке N. Найдите периметр параллелограмма АВСД, если АN=10 СМ
РЕШЕНИЕ
сделаем построение по условию
<ADN=<CDN т.к. DN - биссектриса <D
(AN) || (CD) тогда <AND=<CDN -скрещивающиеся углы
треугольник NAD - равнобедренный (<AND=<АDN )
|AN|=|AD\=10см
(АМ) - биссектриса, высота, медиана
по теореме Фалеса параллельные прямые (AD) || (BC) отсекают на сторонах <AND
Пусть х - длина другого катета, тогда использя свойство катета , лежащего против угла в 30 град и теоремы Пифагора, сот уравнение:
144+х2=4х2, где х2 - это х в квадрате
3х2=144
х2=48
х=4корня из 3 - другой катет.
Теперь рассмотрим маленький треугольник с тем же прямым углом и биссектрисой, которая является гипотенузой, используя тоже свойство катета и опять т Пифагора сост уравнение, в котором х - длина биссектрисы:
(х2)/4+48=х2 домножаю на 4
х2+192=4х2
3х2=192 делим на 3
х2=64
х=8 это и естьдлина биссектрисы.
Биссектриса углов А и Д параллелограмма АВСД пересекаются в точке М, дежащий на стороне ВС. Луч ДМ пересекает прямую АВ в точке N. Найдите периметр параллелограмма АВСД, если АN=10 СМ
РЕШЕНИЕ
сделаем построение по условию
<ADN=<CDN т.к. DN - биссектриса <D
(AN) || (CD) тогда <AND=<CDN -скрещивающиеся углы
треугольник NAD - равнобедренный (<AND=<АDN )
|AN|=|AD\=10см
(АМ) - биссектриса, высота, медиана
по теореме Фалеса параллельные прямые (AD) || (BC) отсекают на сторонах <AND
пропорциональные отрезки , т.к. | NM |=| MD | следовательно |NB| = |АB| =|AN| / 2=10/2=5см
ПЕРИМЕТР параллелограмма AB+BC+CD+DA=5+10+5+10=30 см
ответ периметр 30см