6)Узнаем периметр и площадь меньшего треугольника: p=3*а3=18√3
s=(a²√3)/4=(36*3√3)/4=27√3 кв. ед.
для маленького треугольника данная окружность описанная, поэтому ее радиус будет R=(a3√3)/3=(6√3*√3)/3=6
Для большего треугольника это окружность вписанная, поэтому R=(A√3)/6 => A=6R/√3=6*6/√3=36/√3=12√3
P=3A=12√3*3=36√3
S=(a²√3)/4=(144*3√3)/4=108√3 кв.ед.
9)p=4* 5√3=20√3
s=a²=(5√3)²=25*3=75 кв.ед
Так как у описанной вокруг меньшего квадрата окружности такой же радиус, что и у вписанной в больший кавдрат (ведь это одна и та же окружность), то можем их приравнять
R=(a√2)/2
r=A/2
(a√2)/2=A/2
A=2*(a√2)/2=a√2=5√3*√2=5√6
P=4A=4*5√6=20√6
S=A²=(5√6)²=25*6=150 кв.ед.
12) Для шестиугольника данная окружность описанная, а для квадрата--вписанная. Приравняем формулы для радиуса этой окружности
Объяснение:
1) Р Δ = 30 см.
Пусть а, b, с - стороны треугольника.
Если а = 20 см, то а + b + с = Р Δ ;
20 + b + с = 30; b + с = 30 - 20; b + с = 10 (см).
Для сторон треугольника должна выполняться неравенство треугольника:
а < b + с (20> 10); b <а + с; с <b + а.
Поскольку неравенство не выполняется, то сторона
не может равняться 20 см.
2) Р Δ = 30 см.
Пусть а, b, с - стороны треугольника.
Если а = 15 см, то: а + b + с = Р Δ ;
15 + b + с = 30; b + с = 30 - 15; b + с = 15 (см).
Для сторон треугольника должна выполняться неравенство треугольника:
a < b + c (15 = 15); b <а + с; с <b + а.
Поскольку неравенство не выполняется, то сторона
не может равняться 15 см.
Объяснение:
6)Узнаем периметр и площадь меньшего треугольника: p=3*а3=18√3
s=(a²√3)/4=(36*3√3)/4=27√3 кв. ед.
для маленького треугольника данная окружность описанная, поэтому ее радиус будет R=(a3√3)/3=(6√3*√3)/3=6
Для большего треугольника это окружность вписанная, поэтому R=(A√3)/6 => A=6R/√3=6*6/√3=36/√3=12√3
P=3A=12√3*3=36√3
S=(a²√3)/4=(144*3√3)/4=108√3 кв.ед.
9)p=4* 5√3=20√3
s=a²=(5√3)²=25*3=75 кв.ед
Так как у описанной вокруг меньшего квадрата окружности такой же радиус, что и у вписанной в больший кавдрат (ведь это одна и та же окружность), то можем их приравнять
R=(a√2)/2
r=A/2
(a√2)/2=A/2
A=2*(a√2)/2=a√2=5√3*√2=5√6
P=4A=4*5√6=20√6
S=A²=(5√6)²=25*6=150 кв.ед.
12) Для шестиугольника данная окружность описанная, а для квадрата--вписанная. Приравняем формулы для радиуса этой окружности
R=a6
r=a4/2
a6=a4/2=(4√2)/2=2√2
P4=4*a4=4*4√2=16√2
S4=(a4)²=(4√2)²=16*2=32 кв.ед.