Проведем сечение пирамиды вместе с шаром через высоту пирамиды и середины противоположных сторон основания. Получился равнобедренный треугольник, у которого высота h = 6, а радиус вписанной окружности r = 2; нужно найти сторону, перпендикулярную h (основание, а боковыми сторонами будут апофемы пирамиды:))
проведем из центра вписанной окружности перпендикуляр на боковую сторону. получился прямоугольный треугольник со сторонами h - r = 4 (гипотенуза) и r = 2 (катет). Ясно, что в таком треугольнике углы 30 и 60 градусов.
Поэтому треугольник в сечении - равносторонний, и его сторона равна
" В прямоугольном параллелепипеде АBCDA1B1C1D1, через точку М диагонали А1С,такую что А1М:МС (1:4) проведена прямая МК,параллельная АА1,где точка К принадлежит плоскасти грани АВСД. Найдите площадь треугольника МКС, если АА1=40, АВ=15 корень из 2. АВСД -квадрат".
Объяснение:
Т.к по определению прямоугольного параллелепипеда АА₁ ⊥(АВС), то МК ⊥(АВС), по условию МК||АА₁ .
Найдем из ΔАВС-прямоугольнОГО , равнобедреннОГО , АС по т. Пифагора : АС=√((15√2)²+(15√2)²)=√(2*15²*2)=30.
ΔА₁АС ≈ΔМКС по двум углам : ∠А₁АС=∠МКС =90°, ∠АА₁С=∠КМС как соответственные при МК||АА₁, А₁С-секущая.
По условию А₁М:МС=1:4 , значит к= 5/4 . По т. об отношении площадей подобных треугольников
Радиус шара равен 2. (4/3)*pi*r^3 = 32*pi/3; r^3 = 8; r = 2;
Проведем сечение пирамиды вместе с шаром через высоту пирамиды и середины противоположных сторон основания. Получился равнобедренный треугольник, у которого высота h = 6, а радиус вписанной окружности r = 2; нужно найти сторону, перпендикулярную h (основание, а боковыми сторонами будут апофемы пирамиды:))
проведем из центра вписанной окружности перпендикуляр на боковую сторону. получился прямоугольный треугольник со сторонами h - r = 4 (гипотенуза) и r = 2 (катет). Ясно, что в таком треугольнике углы 30 и 60 градусов.
Поэтому треугольник в сечении - равносторонний, и его сторона равна
h/sin(60) = 12/корень(3).
Объем пирамиды
Vp = (1/3)*6*(12/корень(3))^2 = 96;
" В прямоугольном параллелепипеде АBCDA1B1C1D1, через точку М диагонали А1С,такую что А1М:МС (1:4) проведена прямая МК,параллельная АА1,где точка К принадлежит плоскасти грани АВСД. Найдите площадь треугольника МКС, если АА1=40, АВ=15 корень из 2. АВСД -квадрат".
Объяснение:
Т.к по определению прямоугольного параллелепипеда АА₁ ⊥(АВС), то МК ⊥(АВС), по условию МК||АА₁ .
Найдем из ΔАВС-прямоугольнОГО , равнобедреннОГО , АС по т. Пифагора : АС=√((15√2)²+(15√2)²)=√(2*15²*2)=30.
ΔА₁АС ≈ΔМКС по двум углам : ∠А₁АС=∠МКС =90°, ∠АА₁С=∠КМС как соответственные при МК||АА₁, А₁С-секущая.
По условию А₁М:МС=1:4 , значит к= 5/4 . По т. об отношении площадей подобных треугольников
или . Значит S(МКС)=384 ед².