Пусть данный параллелограмм будет АВСД. Сделаем соразмерно условию рисунок и рассмотрим его. ВН высота, ⊥ АД и⊥ ВС, ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒ Угол АВМ - прямой, угол АВН=90-60º, ⇒ угол ВАН=30º ВН противолежит углу 30º, на этом основании рана половине АВ=4 см Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена. S АВСД=4*12=48 см² Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см, Ясно, что произведение высоты ВМ и стороны СД = 6*8=48 см²
Сделаем соразмерно условию рисунок и рассмотрим его.
ВН высота, ⊥ АД и⊥ ВС,
ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒
Угол АВМ - прямой, угол АВН=90-60º, ⇒
угол ВАН=30º
ВН противолежит углу 30º, на этом основании рана половине АВ=4 см
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
S АВСД=4*12=48 см²
Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см,
Ясно, что произведение высоты ВМ и стороны СД = 6*8=48 см²
трапеция АВСД, ВС=13, АД=27, СД=10, уголД=30, проводим высоту СН на АД, треугольник НСД прямоугольный, СН - высота трапеции=1/2СД=10/2=5 (катет лежит против угла 30=1/2 гипотенузы), Площадь АВСД=(ВС+АД)*СН/2=(13+27)*5/2=100
3. МК=МТ+КТ=5+10=15, периметрМКР=МК+КР+МР=15+9+12=36, полупериметр (р)=периметр/2=36/2=18, площадь МКР=корень(р*(р-МК)*(р-КР)*(р-МР))=корень(18*3*9*6)=54, проводим высоту РН на МК, РН=2*площадьМКР/МК=2*54/15=7,2, площадь МТР=1/2*МТ*РН=1/2*5*7,2=18, площадь КРТ=54-18=36