Кеңістіктегі үш нүкте арқылы неш 3. Кеңістікте өрбір төртеуі бір жазықтықта жатпайтын әртүрлі 1) төрт; 2) бес; 3)* п нүктелер арқылы неше жазықтық жүргізуге болады? 4. 1) Екі жазықтық; 2) үш жазықтық; 3)* төрт жазықтық кеңістікті
Треугольники АВ1В и АА1В прямоугольные с общей гипотенузой АВ, значит оба они вписаны в одну окружность с диаметром АВ. Точка О - центр окружности. АО=ВО=АВ/2=4/2=2. В тр-ке АА1В1 ОА1=ОВ1=R=2. По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2. ∠А1ОВ1=arccos(-1/2)=120°. Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит: ∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ.
Диаметральное сечение усеченного конуса - равнобокая трапеция с основаниями 8 и 16 м. Образующая наклонена к плоскости основания под углом 45°, значит высота усеченного конуса (высота трапеции) равна полуразности оснований, то есть 4 м. Есть формула для расчета объема усеченного конуса: V=(1/3)*π*h(R1²+R1*R2+R2²) или V=(1/3)*π*4*(64+32+16)≈469 м³. Если без формулы, то: так как диаметральное сечение конуса представляет собой равнобедренный треугольник, то отсекаемая часть усеченного конуса - это подобный треугольник с коэффициентом подобия R1:R2=1/2. Значит высота "полного" конуса равна 8м. Тогда его объем равен V=(1/3)So*H=(1/3)*π64*8. Объем "отсекаемой" - верхней части конуса равен V1=(1/3)*π16*4. Тогда объем усеченного конуса равен V-V1 или Vу=(1/3)*π64*8-(1/3)*π16*4=(1/3)*π16*4(8-1) ≈149π ≈ 469 м³. ответ: объем равен 469 м³.
Точка О - центр окружности. АО=ВО=АВ/2=4/2=2.
В тр-ке АА1В1 ОА1=ОВ1=R=2.
По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2.
∠А1ОВ1=arccos(-1/2)=120°.
Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит:
∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ.
Образующая наклонена к плоскости основания под углом 45°, значит высота усеченного конуса (высота трапеции) равна полуразности оснований, то есть 4 м.
Есть формула для расчета объема усеченного конуса:
V=(1/3)*π*h(R1²+R1*R2+R2²) или V=(1/3)*π*4*(64+32+16)≈469 м³.
Если без формулы, то:
так как диаметральное сечение конуса представляет собой равнобедренный треугольник, то отсекаемая часть усеченного конуса - это подобный треугольник с коэффициентом подобия R1:R2=1/2.
Значит высота "полного" конуса равна 8м.
Тогда его объем равен V=(1/3)So*H=(1/3)*π64*8.
Объем "отсекаемой" - верхней части конуса равен
V1=(1/3)*π16*4.
Тогда объем усеченного конуса равен V-V1 или
Vу=(1/3)*π64*8-(1/3)*π16*4=(1/3)*π16*4(8-1) ≈149π ≈ 469 м³.
ответ: объем равен 469 м³.