Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Периметр прямоугольника рассчитывается по формуле:
P = 2 * (x + y), где P - периметр, x - длина одной стороны прямоугольника, y -длина другой стороны.
Площадь прямоугольника рассчитывается по формуле:
S = x * y
Из условия известно, что P = 60, а разность сторон (x - y) = 10. Составим систему уравнений:
{60 = 2* (x+y)
{x - y = 10
Выразим "x" из второго уравнения, а первое уравнение оставим неизменным:
{60 = 2 * (x+y)
{x = 10 + y
Подставим значение "x" из второго уравнения в первое:
60 = 2 * (10 + y + y)
Раскроем скобки:
60 = 20 + 2y + 2y
Всё с "y" в одной стороне, без "y" в другой. При переносе из одной части уравнения в другую, меняем знак:
2y + 2y = 60 - 20
4y = 40
y = 10
Вспоминаем, что x = 10 + y. Соответственно, x = 10 + 10 = 20.
Находим площадь прямоугольника: S = 20 * 10 = 200.
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см