Нужно просто очень аккуратно посмотреть углы))) треугольник ABD по построению равнобедренный, ---> AL будет и медианой и высотой))) АК _|_ BD если обозначить половину угла ВАС как альфа (а), то ADK = 90-a треугольники АОС, АОВ, ВОС будут равнобедренными с равными при основаниях углами... обозначим еще один угол для краткости х = ОАС и из условия, что сумма углов треугольника АВС = 180 градусов, запишем через (а) и (х) величину угла ОВС = 90-2а на угол CBD останется (а-х) градусов... из равнобедренности треугольника BLD следует, что BDL = (a-x) и получится, что в треугольниках АКХ и ХТD два угла равны как вертикальные, равенство двух других углов только что доказано КАХ=ХDТ=(а-х) и, следовательно, третьи углы тоже равны: АКХ=ХТD=90 градусов т.е. АТ(или АО) _|_ LD
Немного кривое объяснение но как есть: выберем одну прямую..пусть это будет прямая ,тогда все другие прямые лежат с ней в одной плоскости(аксиома) теперь среди оставшихся прямых выберем прямую .Она лежит с прямой в одной плоскости.Но другие прямые тоже лежат с прямой в одной плоскости(та же аксиома) и они же лежат в одной плоскости с прямой . по аксиоме плоскость определяется однозначно по двум пересекающимся прямым.Следовательно все оставшиеся прямые ,которые пересекаются и с и с лежат в плоскости ,образованной при пересечении и . Значит все прямые лежат в одной плоскости
треугольник ABD по построению равнобедренный,
---> AL будет и медианой и высотой))) АК _|_ BD
если обозначить половину угла ВАС как альфа (а), то
ADK = 90-a
треугольники АОС, АОВ, ВОС будут равнобедренными
с равными при основаниях углами...
обозначим еще один угол для краткости х = ОАС
и из условия, что сумма углов треугольника АВС = 180 градусов,
запишем через (а) и (х) величину угла ОВС = 90-2а
на угол CBD останется (а-х) градусов...
из равнобедренности треугольника BLD следует, что BDL = (a-x)
и получится, что в треугольниках АКХ и ХТD два угла равны как вертикальные,
равенство двух других углов только что доказано КАХ=ХDТ=(а-х)
и, следовательно, третьи углы тоже равны: АКХ=ХТD=90 градусов
т.е. АТ(или АО) _|_ LD