Дана пирамида SABC, в которой AB=AC=SB=SC=17, BC=SA=16. Точки M и N — середины рёбер BC и SA.
а) Докажите, что отрезок MN является общим перпендикуляром к прямым BC и SA. б) Найдите объём пирамиды ABMN.
Объяснение:
1)BN-медиана ΔSАВ-равнобедренного⇒BN-высота и BN⊥АS.
CN-медиана ΔSАС-равнобедренного⇒СN-высота и СN⊥АS. Значит по признаку перпендикулярности прямой и плоскости АS⊥ВСN( она перпендикулярна 2-м пересекающимся прямым).А если AS перпендикулярна плоскости, то перпендикулярна любой прямой, лежащей в этой плоскости , например ВС. Вывод AS⊥BC.
2)V(пирам)=1/3*S(осн)*h.
S(осн)=S(АВМ)=1/2*ВМ*АМ.
ВМ=8, АМ=√(17²-8²)=15.
S(осн)=0,5*8*15=60 (ед²)
Ищем высоту h из ΔАNM-прямоугольного, т.к MN⊥AS. Применяем т. о среднем пропорциональном для катета и высоты.
Т.к. катет есть среднее пропорциональное между гипотенузой и проекцией катета, то AN=√(AM*AO) или AО=AN²:АМ=64/15.
Тогда ОМ=15-64/15=161/15
Высота NO-есть среднее пропорциональное между проекциями катетов на гипотенузу АМ. Тогда NO=√(АО*ОМ)=√(64/15*161/15)=8/15√161.
Объяснение: обозначим вершины параллелограмма А В С Д, а его высоты ВН1 и ВН2. Пусть одна его стороны АВ=СД=а, вторые ВС=АД=b. Зная, что площадь параллелограмма - это произведение его стороны и высоты, которая проведена к стороне, составим уравнение согласно формуле площади:
S=b×BH1. Так как площадь будет одинаковой независимо от того какой вариант мы выберем, то:
b×BH1=a×ВН2
4b=12√3a
b=12√3a/4
b=3√3a
Высота ВН1 образует прямой угол 90° также со стороной ВС, поэтому
угол СВН=90-60=30°. Рассмотрим полученный ∆СВН2. Он прямоугольный где ВН2 и СН2 -катеты, а ВС- гипотенуза. Так как сумма острых углов прямоугольного треугольника составляет 90°, то угол С=90-30=60° . В параллелограмме противоположные углы между собой равны, поэтому
угол А=углу С=60°. Рассмотрим полученный ∆ АВН1. Он прямоугольный, где АН1 и ВН1 катеты, а АВ - гипотенуза. Угол АВН=90-60=30°. Катет лежащий напротив него равен половине гипотенузы, поэтому АН=а/2. Составим уравнение используя теорему Пифагора:
АВ²-АН1²=ВН1²
а²-а²/2²=4²
а²-а²/4=16. Здесь ищем общий знаменатель и получаем:
(4а²-а²)/4=16
3а²/4=16
3а²=4×16
3а²=64
а²=64/3
а=√64/3
а=8/√3
Если сторона а=8/√3, тогда
сторона b=8/√3×3√3=24
Теперь найдём площадь параллелограмма, зная его стороны:
Дана пирамида SABC, в которой AB=AC=SB=SC=17, BC=SA=16. Точки M и N — середины рёбер BC и SA.
а) Докажите, что отрезок MN является общим перпендикуляром к прямым BC и SA. б) Найдите объём пирамиды ABMN.
Объяснение:
1)BN-медиана ΔSАВ-равнобедренного⇒BN-высота и BN⊥АS.
CN-медиана ΔSАС-равнобедренного⇒СN-высота и СN⊥АS. Значит по признаку перпендикулярности прямой и плоскости АS⊥ВСN( она перпендикулярна 2-м пересекающимся прямым).А если AS перпендикулярна плоскости, то перпендикулярна любой прямой, лежащей в этой плоскости , например ВС. Вывод AS⊥BC.
2)V(пирам)=1/3*S(осн)*h.
S(осн)=S(АВМ)=1/2*ВМ*АМ.
ВМ=8, АМ=√(17²-8²)=15.
S(осн)=0,5*8*15=60 (ед²)
Ищем высоту h из ΔАNM-прямоугольного, т.к MN⊥AS. Применяем т. о среднем пропорциональном для катета и высоты.
Т.к. катет есть среднее пропорциональное между гипотенузой и проекцией катета, то AN=√(AM*AO) или AО=AN²:АМ=64/15.
Тогда ОМ=15-64/15=161/15
Высота NO-есть среднее пропорциональное между проекциями катетов на гипотенузу АМ. Тогда NO=√(АО*ОМ)=√(64/15*161/15)=8/15√161.
V(пирам)=1/3*60*8/15√161=32/3*√161.
PS. Не доказано, что NO " падает " на АМ.
ответ: S=96
Объяснение: обозначим вершины параллелограмма А В С Д, а его высоты ВН1 и ВН2. Пусть одна его стороны АВ=СД=а, вторые ВС=АД=b. Зная, что площадь параллелограмма - это произведение его стороны и высоты, которая проведена к стороне, составим уравнение согласно формуле площади:
S=b×BH1. Так как площадь будет одинаковой независимо от того какой вариант мы выберем, то:
b×BH1=a×ВН2
4b=12√3a
b=12√3a/4
b=3√3a
Высота ВН1 образует прямой угол 90° также со стороной ВС, поэтому
угол СВН=90-60=30°. Рассмотрим полученный ∆СВН2. Он прямоугольный где ВН2 и СН2 -катеты, а ВС- гипотенуза. Так как сумма острых углов прямоугольного треугольника составляет 90°, то угол С=90-30=60° . В параллелограмме противоположные углы между собой равны, поэтому
угол А=углу С=60°. Рассмотрим полученный ∆ АВН1. Он прямоугольный, где АН1 и ВН1 катеты, а АВ - гипотенуза. Угол АВН=90-60=30°. Катет лежащий напротив него равен половине гипотенузы, поэтому АН=а/2. Составим уравнение используя теорему Пифагора:
АВ²-АН1²=ВН1²
а²-а²/2²=4²
а²-а²/4=16. Здесь ищем общий знаменатель и получаем:
(4а²-а²)/4=16
3а²/4=16
3а²=4×16
3а²=64
а²=64/3
а=√64/3
а=8/√3
Если сторона а=8/√3, тогда
сторона b=8/√3×3√3=24
Теперь найдём площадь параллелограмма, зная его стороны:
S1=8/√3×12√3=96
S2=24×4=96