Кокружности с центром в точке о проведена касательная mn, при этом мк = kn (к — точка касания). тогда треугольники мко и nko будут: выберите один ответ: a. равны по катету и острому углу b. равны по двум катетам c. не равны d. равны по катету и гипотенузе
Тр-ки АОК и АОН равны по признакам подобия и общей стороне, значит АН=АК=14.4 см
Точно так-же ВМ=ВК=25.6 см
СН=СМ=R
АС=АН+СН=14.4+R
ВС=ВМ+СМ=25.6+R
Площадь тр-ка АВС можно посчитать по двум формулам:
1) S=АК·КВ=14.4·25.6=368.64 см² - формула подходит при вписанной окружности в прямоугольный тр-ник.
2) S=АС·ВС/2
(14.4+R)(25.6+R)/2=368.64
R²+40R-368.64=0
R1≈-47.72 - отрицательное значение не подходит,
R2≈7.72 см.
P.S. ответ не целый, но всё проверено.
2) Из теоремы Пифагора для треугольника ABD найдём катет: AD = 8 см.
Площадь треугольника ABC равна AD * BC / 2 = 14 * 8 / 2 = 56 (см²)
Аналогично найдём высоту к AB (CL):
S = CL * AB / 2, CL = 2 * S / AB = 112 / 10 = 11,2 (см)