Коло вписано в трикутник АВС і дотикається до його сторін АВ, ВС і АС у точках М, К, Е відповідно. ВК=2см, КС=4см, АМ=8см. Знайдіть периметр трикутника АВС. Если не сложно рисунок
проведем отрезок hm - очевидно что это будет также медиана только уже прямоугольного треугольника внс. вспомним что медиана равна половине гипотенузе то есть треугольник mhc равнобедренный так как mc=hm .
угол amh = amc-hmc , а так как amc=180-(x+2x) ; hmc=180-(2x+2x)
amh=180-3x-(180-4x) = x
то есть треугольник amh тоже равнобедренный , значит ah=hm=1
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. АВ1 - проекция диагонали DB1 призмы на боковую грань АА1В1В. Значит угол АВ1D = α. Тогда сторона основания призмы (квадрата) АD=DB1*Sinα=а*Sinα. Диагональ основания ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α). Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vп=64*(1/4)*√2/2=8√2. Объем описанного цилиндра равен So*h, где So=πR². R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2). Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2. ответ: Vп=8√2. Vц=π*4√2.
проведем отрезок hm - очевидно что это будет также медиана только уже прямоугольного треугольника внс. вспомним что медиана равна половине гипотенузе то есть треугольник mhc равнобедренный так как mc=hm .
угол amh = amc-hmc , а так как amc=180-(x+2x) ; hmc=180-(2x+2x)
amh=180-3x-(180-4x) = x
то есть треугольник amh тоже равнобедренный , значит ah=hm=1
стало быть bc=2hm=2*1=2
подробнее - на -
Тогда сторона основания призмы (квадрата)
АD=DB1*Sinα=а*Sinα. Диагональ основания
ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α).
Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vп=64*(1/4)*√2/2=8√2.
Объем описанного цилиндра равен So*h, где So=πR².
R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2).
Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2.
ответ: Vп=8√2. Vц=π*4√2.