меньшая диагональ ромба равна а. это как раз диагональ проведенная из вершины тупого угла и образует с высотой угол 30 град. высота - это перпендикуляр к противоположно стороне ромба (т.е.) образует угол 90 град. т.к. сумма углов треугольника равна 180, то угол между короткой диагональю и стороной ромба равен 60 град. получается, что короткая диагональ делит ромб на 2 равносторонних треугольника и диагональ равна стороне ромба, т.е. а. таким образом периметр равен 4а
периметр ромба равен 4а.
решение.
меньшая диагональ ромба равна а. это как раз диагональ проведенная из вершины тупого угла и образует с высотой угол 30 град. высота - это перпендикуляр к противоположно стороне ромба (т.е.) образует угол 90 град. т.к. сумма углов треугольника равна 180, то угол между короткой диагональю и стороной ромба равен 60 град. получается, что короткая диагональ делит ромб на 2 равносторонних треугольника и диагональ равна стороне ромба, т.е. а. таким образом периметр равен 4а
в четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
трапеция - четырехугольник, следовательно, если в неё можно вписать окружность, то сумма ее оснований равна сумме боковых сторон.
сумма оснований данной трапеции 3+5=8, а её средняя линия равна 4
пусть длина меньшего основания а . тогда длина большего - 8-а.
средняя линия трапеции делит саму трапецию на две меньшего размера, высоты каждой из которых равны половине высоты исходной.
площадь трапеции равна полусумме оснований, умноженной на высоту.
пусть высота каждой части трапеции равна h.
тогда площадь верхней трапеции будет (а+4)•h: 2,
а площадь большей (8-а+4)•h: 2=(12-а)•h: 2
по условию отношение этих площадей равно 5/11⇒
[ (а+4)•h: 2]: [ (12-а)•h: 2]=5/11
отсюда 60-5а=11а+44
16а=16
а=1
подробнее - на -