АВСD - равнобокая трапеция, АС и ВD диагонали, по условию они перпендикулярны. Проведите СК параллельно диагонали ВD. К лежит на продолжении АD. Получится треугольник АСК. Он прямоугольный, потому что угол АСК= углу АОD = 90 градусов. К тому же этот треугольник равнобедренный, потому что в нем СК=АС. FR - основание треугольника. Проведите высоту этого треугольника с вершины С. Пусть это будет отрезок СМ. Высота в равнобедренном треугольнике, проведенная к основанию, будет чем ? -медианой. Значит, М - середина АК. СМ = 1/2АК = 1/2(АD + DК) а DК = ВС, как противоположные стороны параллелограмма ВСКD. Тогда СМ = 1/2(а + в) А средняя линия как раз и равна 1/2(а+в) Значит, высота равна средней линии.
Дано:
Трапеция ABCD, угол D равен 60 градусов, диагональ BD делит этот угол пополам. AD = 14 см.
Углы ADB = BDC = 60 / 2 = 30 градусов.
Угол DBC = ADB = 30 градусов (как углы при параллельных прямых)
Треугольник BCD равнобедренный с основанием BD, следовательно, BC = CD.
Угол В трапеции равен 90 + 30 = 120 градусов, угол А равен 180 - 120 = 60 градусов.
Трапеция равнобедренная, AB = BC = CD.
AD = 2AB по законам прямоугольного треугольника.
AB + BC + CD + AD = AB + AB + AB + 2AB = 5AB = 2,5AD = 2,5 * 14 = 35 см.
ответ: 35 см.
АВСD - равнобокая трапеция, АС и ВD диагонали, по условию они перпендикулярны.
Проведите СК параллельно диагонали ВD. К лежит на продолжении АD. Получится треугольник АСК. Он прямоугольный, потому что угол АСК= углу АОD = 90 градусов. К тому же этот треугольник равнобедренный, потому что в нем СК=АС. FR - основание треугольника.
Проведите высоту этого треугольника с вершины С. Пусть это будет отрезок СМ.
Высота в равнобедренном треугольнике, проведенная к основанию, будет чем ? -медианой. Значит, М - середина АК. СМ = 1/2АК = 1/2(АD + DК)
а DК = ВС, как противоположные стороны параллелограмма ВСКD.
Тогда
СМ = 1/2(а + в)
А средняя линия как раз и равна 1/2(а+в)
Значит, высота равна средней линии.