У правильного треугольника стороны равны, внутренние углы его равны 60°, а высота является и медианой и биссектрисой. Именно поэтому центр описанной окружности и центр вписанной окружности для этого треугольника совпадают, так как для первого - это пересечение биссектрис треугольника, а для второго - пересечение серединных перпендикуляров. Рассмотрим треугольник АОН. Это прямоугольный треугольник с <АOH=90° и <OAH=30° (АО - биссектриса <ВАС). Тогда АО=2*ОН, так как катет ОН лежит против угла 30°. Но ОН - это радиус вписанной окружности, а АО - радиус описанной окружности. Значит R=2r. R=8см (дано). r=4см. АН - это половина стороны треугольника и по Пифагору равна АН=√(R²-r²) = √(8²-4²) = 4√3см. Тогда сторона треугольника равна 8√3см, а его периметр равен Р=3*8√3 =24√3см. ответ: r=4см, Р=24√3см.
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
4)
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теперь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5)центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы, поэтому радиус равен двум радиус вписанной в шестиугольник окружности r=(a*корень из 3)/2 отсюда выражаем сторону a=2r/(корень из 3) подставим занчение радиуса a=4/(корень из 3)
Именно поэтому центр описанной окружности и центр вписанной окружности для этого треугольника совпадают, так как для первого - это пересечение биссектрис треугольника, а для второго - пересечение серединных перпендикуляров.
Рассмотрим треугольник АОН. Это прямоугольный треугольник с <АOH=90° и <OAH=30° (АО - биссектриса <ВАС).
Тогда АО=2*ОН, так как катет ОН лежит против угла 30°.
Но ОН - это радиус вписанной окружности, а АО - радиус описанной окружности. Значит R=2r. R=8см (дано). r=4см.
АН - это половина стороны треугольника и по Пифагору равна
АН=√(R²-r²) = √(8²-4²) = 4√3см.
Тогда сторона треугольника равна 8√3см, а его периметр равен
Р=3*8√3 =24√3см.
ответ: r=4см, Р=24√3см.
1)Площадь=60. Периметр = 34
2)S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
4)
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теперь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5)центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы, поэтому радиус равен двум
радиус вписанной в шестиугольник окружности r=(a*корень из 3)/2 отсюда выражаем сторону a=2r/(корень из 3)
подставим занчение радиуса a=4/(корень из 3)