Объём пирамиды=1/3*площадь основани*высота пирамиды. основание - правильный треугольник со стороной 6 см, значит 1/4корень из 3*сторону в квадрате=1/4корень из 3*6 в квадрате=9корен из 3. высота пирамиды. если её провести к высоте основания, то получиться прямой треугольник со стороной 60 градусов у основания и 30 - у вершины. Сторона против угла в 60 градусов=половине гипотенузы т. е. гипотенуза - боковое ребро, следовательно 6/2 = 3. Высота пирамиды - это катет этого прямого треугольника = 3. площадь = 1/3*9корень из 3*3=9корень из 3
Объяснение:
Радиус окружности, описанной около треугольника ABC, равен 5. Сторона AB=5, высота BD=4. Найдите длину стороны BC.
Треугольник АВС вписан в окружность.
Сторона АВ=5 и равна радиусу этой окружности, который равен 5.
Соединив центр О окружности с концами хорды АВ, получим равносторонний треугольник АОВ.
Угол АОВ=60º
Вписанный угол ВСА равен половине центрального. опирающегося на дугу АВ.
Угол АСВ=30º
∆ ВСD- прямоугольный по условию, ВD- высота и равна 4
Катет BD противолежит углу 30º, ⇒ гипотенуза ВС треугольника ВСD равна 4*2=8.
основание - правильный треугольник со стороной 6 см, значит 1/4корень из 3*сторону в квадрате=1/4корень из 3*6 в квадрате=9корен из 3.
высота пирамиды. если её провести к высоте основания, то получиться прямой треугольник со стороной 60 градусов у основания и 30 - у вершины. Сторона против угла в 60 градусов=половине гипотенузы т. е. гипотенуза - боковое ребро, следовательно 6/2 = 3. Высота пирамиды - это катет этого прямого треугольника = 3.
площадь = 1/3*9корень из 3*3=9корень из 3