В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Лісанна
Лісанна
30.10.2022 09:33 •  Геометрия

Круговой сектор радиуса r с центральным углом 60 градусов вращается вокруг одного из радиусов, образующих этот угол. найдите объем тела вращения. желательно предоставьте решение на листе. буду .

Показать ответ
Ответ:
Нюта241
Нюта241
25.09.2020 13:13
При вращении кругового сектора АОВ вокруг радиуса ОА получается тело вращения - шаровой сектор радиуса R=ОА и высотой сектора h=DA.
Объем его вычисляется по формуле: V= (2/3)*πR²*h.
Рассмотрим сечение этого сектора (смотри рисунок):
В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы  ОВ (R), то есть OD=R/2.
Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2.
V=(2/3)*π*R²*R/2=(1/3)πR³.

Круговой сектор радиуса r с центральным углом 60 градусов вращается вокруг одного из радиусов, образ
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота