Рассмотрим меньший из углов между хордой AB и касательной к окружности в точке B (см рис). Пусть BD - диаметр окружности. Поскольку BD перпендикулярен к касательной, угол ABD дополняет до 90° рассматриваемый угол между хордой AB и касательной. Но по теореме угол BAD прямой. Значит, угол ADB также дополняет до 90° угол ABD. Таким образом, рассматриваемый угол равен углу ADB и измеряется (по теореме 5.3) половиной указанной дуги.
Для полноты доказательства надо рассмотреть и второй - больший угол между AB и касательной. Этот угол - смежный с рассмотренным - дополняет его до 180° и измеряется половиной большей дуги, задаваемой хордой AB.
Я не знаю как тебе нужно оформить, но начни доказательство с того, что диаметр - это хорда, проходящая через центр окружности.
1). Диаметры равны и пересекаются в середине (т. е. точкой пересечения делятся пополам). Из этого следует, что:
АО=ОС=ВО=OD (т. к. это радиусы окружности).
2). Пусть чентр окружности - точка О.
3). Рассмотрим треугольники АОС и BOD.
Они равны по первому признаку равенства треугольников (по двум сторонами и углу между ними).
Угол АОС равен углу BOD (т. к. они вертикальные)
Поэтому ВD и АС равны. И там дальше продолжай доказывать, исходя из того, что написано...
Рассмотрим меньший из углов между хордой AB и касательной к окружности в точке B (см рис). Пусть BD - диаметр окружности. Поскольку BD перпендикулярен к касательной, угол ABD дополняет до 90° рассматриваемый угол между хордой AB и касательной. Но по теореме угол BAD прямой. Значит, угол ADB также дополняет до 90° угол ABD. Таким образом, рассматриваемый угол равен углу ADB и измеряется (по теореме 5.3) половиной указанной дуги.
Для полноты доказательства надо рассмотреть и второй - больший угол между AB и касательной. Этот угол - смежный с рассмотренным - дополняет его до 180° и измеряется половиной большей дуги, задаваемой хордой AB.