Вариант решения. Сделаем для наглядности рисунок. Площадь и основание треугольника нам известны, найдем его высоту. Опустим ее из вершины А к продолжению стороны ВС, точку пересечения обозначим Н. Применим формулу нахождения площади треугольника S=ah:2 из которой h=2S:a=32:8=4 см Ясно, что треугольник АНС - египетский, т.к. гипотенуза равна 5 см, один из катетов 4 см, и НС=3 см, это можно проверить по т. Пифагора. Из прямоугольного треугольника АВН найдем искомую сторону АВ. АВ²=АН²+ВН²= 4²+(8+3)²=16+121=137 АВ=√137=≈11,705 см Другое решение верное, хотя и дало иной ответ, т.к. значения величины угла и его синуса и косинуса, найденные по таблицам, являются обычно приблизительными.
Сделаем для наглядности рисунок.
Площадь и основание треугольника нам известны, найдем его высоту.
Опустим ее из вершины А к продолжению стороны ВС, точку пересечения обозначим Н.
Применим формулу нахождения площади треугольника
S=ah:2
из которой
h=2S:a=32:8=4 см
Ясно, что треугольник АНС - египетский, т.к. гипотенуза равна 5 см, один из катетов 4 см, и НС=3 см, это можно проверить по т. Пифагора.
Из прямоугольного треугольника АВН найдем искомую сторону АВ.
АВ²=АН²+ВН²= 4²+(8+3)²=16+121=137
АВ=√137=≈11,705 см
Другое решение верное, хотя и дало иной ответ, т.к. значения величины угла и его синуса и косинуса, найденные по таблицам, являются обычно приблизительными.
ответ:
1.одна точка - на две части
2.1 точка
3.луч - фигура, имеющая начало из точки, но не имеющая конца. любой буквой обозначается (обычно о)
отрезок - фигура, имеющая начало и конец. любыми двумя буквами.
4.любой отрезок можно разделить на конечное количество отрезков
их длины можно складывать
можно вычитать для выяснения какой отрезок длиннее
5.два отрезка называются равными, если они имеют одинаковую длину, то есть в одинаковых единицах измерения их длины выражаются равными числами.
- отрезок ав
- отрезок сд
ав = сд
6. не знаю.
7.6+2=8
6-2=4
первый отрезок 6 см
второй 2 см
8.не знаю.
9.не дописал(
10.которая делит отрезок на две части
объяснение:
прости)