Площади подобных многоугольников относятся как квадраты их соответственных сторон.Пусть S1- площадь меньшего многоугольника, а S2 - большего. Пусть Ai - i-я сторона меньшего многоугольника (i=1,,n), а Bi - сторона большего многоугольника. Тогда Ai/Bi=√(S1/S2)=√(4/9)=2/3. Но тогда периметр меньшего многоугольника P1=∑Ai=2/3*∑Bi=P2, где P2- периметр большего многоугольника. По условию, P2=P1+10. А так как P1=2/3*P2, то получаем уравнение P2=2/3*P2+10, откуда P2/3=10 см и P2=30 см. А тогда P1=2/3*30=20 см. ответ: 20 см и 30 см.
Сечение, проходящее через DP --это треугольник, в котором одна сторона уже задана, осталось найти третью вершину)) эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ))) можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани... DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE в плоскости АСЕ (это диагональное сечение параллелепипеда))) строим параллельную СЕ прямую... или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ)))
можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани...
DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE
в плоскости АСЕ (это диагональное сечение параллелепипеда)))
строим параллельную СЕ прямую...
или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую