Кто проходит Сириус.курсы -дополнительные главы геометрии 9 класс? Нужны ответы на модули: изогональное сопряжение, инверсия, композиция гомотетий, поворотная гомотетия. По цене договоримся.
Площадь полной поверхности пирамиды (обозначим её МАВСD) состоит из суммы площадей всех граней. Противоположные боковые грани равны по трём сторонам. Так как МО перпендикулярна плоскости основания, а ВD⊥АВ и CD, то ОВ – проекция наклонной МВ. По т.о 3-х перпендикулярах МВ⊥АВ.Диагонали параллелограмма точкой пересечения делятся пополам ⇒. ОВ=1,5.Высота пирамиды МО⊥ОВ. Из ∆ МОВ по т.Пифагора МВ=√(МО²+ОВ²)=√(4+2,25)=2,5Ѕ(АМВ)=МВ•АВ:2=2,5•4:2=5 м²Ѕ(MCD)=S(AMB) ⇒Ѕ(MCD)+S(AMB)=10 м²Найдём высоту второй пары боковых граней. а) Высота DHпрямоугольного ∆ BDH (в основании) равна произведению катетов, делённому на гипотенузу. DH=DB•DC:BC=3•4:5=2,4 мПроведем ОК⊥ВСВO=ОD ⇒ ОК - средняя линия ∆ВDH и равна половине DH.ОК=1,2 мОК - проекция наклонной МК. ⇒ По т.ТПП отрезок МК⊥ВС и является высотой ∆ ВМСб) Из прямоугольного ∆ МОК по т.Пифагора МК=√(MO²+OK²)=√(4+1,44)=√5,44√5,44=√(544/100)=(2√34):10=0,2√34 S(MBC)=BC•MK:2=0,5•5•0,2√34=0,5√34 м² S(AMD)=S(MBC)⇒ S(AMD)+S(MBC)=2•0,5√34=√34 м²S(ABCD)=DB•AB=3•4=12 м²Площадь полной поверхности MABCD:2•S(AMB)+S(ABCD)+2•S(MBC=10+12+√34=(22+√34)м²
Решение. 1. На прямой "а" откладываем последовательно данные нам отрезки АВ=2см и CD=3см (точки В и С совпадают). 2. При циркуля делим отрезок АD пополам, проведя окружности с центрами в точках А и D равными радиусами R=AD) и соединив точки пересечения окружностей. 3. Из полученной точки О радиусом ОА=ОD проводим полуокружность. 4. Из точки В (С) восстанавливаем перпендикуляр к прямой AD. 5. Точка пересечения полуокружности и этого перпендикуляра даст нам вершину Е прямого угла искомого прямоугольного треугольника. 6. Соединив точки А, Е и D получим искомый прямоугольный треугольник АЕD. Доказательство: <AED=90°, так как опирается на диаметр AD.
1. На прямой "а" откладываем последовательно данные нам отрезки АВ=2см и CD=3см (точки В и С совпадают).
2. При циркуля делим отрезок АD пополам, проведя окружности с центрами в точках А и D равными радиусами R=AD) и соединив точки пересечения окружностей.
3. Из полученной точки О радиусом ОА=ОD проводим полуокружность.
4. Из точки В (С) восстанавливаем перпендикуляр к прямой AD.
5. Точка пересечения полуокружности и этого перпендикуляра даст нам вершину Е прямого угла искомого прямоугольного треугольника.
6. Соединив точки А, Е и D получим искомый прямоугольный треугольник АЕD.
Доказательство: <AED=90°, так как опирается на диаметр AD.