Пусть нижнее основание равно а, верхнее равно b, боковая сторона равна с, угол при нижнем основании равен α.
У трапеции, в которую вписана окружность, боковая сторона равна средней линии: с = (a + b)/2.
Используем формулу площади трапеции:
S = ((a+b)/2)*h = ((a+b)/2)*√(ab).
Получаем первое уравнение: ((a+b)/2)*√(ab) = 576 или
(a+b)*√(ab) = 1152.
Теперь используем заданное условие: расстояние между точками касания этой окружности боковых сторон равно 3.
Выразим расстояние t между точками касания.
t = b+2(b/2)*cos α = b(1 + cos α) = 3.
Косинус альфа выразим так:
cos α = ((a - b)/2)/c = ((a - b)/2)/((a + b)/2) = (a - b)/(a + b).
Тогда второе уравнение получим в виде:
b(1 + ((a - b)/(a + b))) = 3.
Решаем систему из двух уравнений с неизвестными a и b.
{(a+b)*√(ab) = 1152.
{b(1 + ((a - b)/(a + b))) = 3.
Решение даёт значение оснований трапеции:
a = 12(√15 + 4) ≈ 94,4758.
b = -12(√15 - 4) ≈ 1,5242.
Находим радиус r вписанной окружности.
r = h/2 = √(ab)/2 = 6.
ответ: радиус равен 6.
1.BOA = DOE по первому признаку, т.к. BO=OD,AO=OE, угол BOA= угол EOD(вертикальные)
2. ABC=BCD по третьему признаку, т.к. AB=BD, AC=CD,BC-общая
3. OMN=QOR по второму признаку, т.к. NO=OQ, угол ONM=угол RQO, угол NOM= угол ROQ
4 DEC = DKC по первому признаку, т.к. DE=DK, DC-общая,угол EDC= угол KDC
5 RQH=RPH по первому признаку,т.к.угол RHQ = угол RHP, QH=HP, RH- общая
6. BAK=BMC. Чертим окружность из точки В, радиус которой равен BK и BM. BK=BM, AB=BC, AK= MC (по третьему признаку)
7. DCE=FEC по первому признаку,т.к. CF=DE, CED=FCE, CE- общая
8. ABD=BCD по второму признаку,т.к. ADB=CBD,ABD=BDC,BD-общая
9.KLN=LMN по третьему признаку,т.к.LK=MN,KN=LM,LN- общая
Пусть нижнее основание равно а, верхнее равно b, боковая сторона равна с, угол при нижнем основании равен α.
У трапеции, в которую вписана окружность, боковая сторона равна средней линии: с = (a + b)/2.
Используем формулу площади трапеции:
S = ((a+b)/2)*h = ((a+b)/2)*√(ab).
Получаем первое уравнение: ((a+b)/2)*√(ab) = 576 или
(a+b)*√(ab) = 1152.
Теперь используем заданное условие: расстояние между точками касания этой окружности боковых сторон равно 3.
Выразим расстояние t между точками касания.
t = b+2(b/2)*cos α = b(1 + cos α) = 3.
Косинус альфа выразим так:
cos α = ((a - b)/2)/c = ((a - b)/2)/((a + b)/2) = (a - b)/(a + b).
Тогда второе уравнение получим в виде:
b(1 + ((a - b)/(a + b))) = 3.
Решаем систему из двух уравнений с неизвестными a и b.
{(a+b)*√(ab) = 1152.
{b(1 + ((a - b)/(a + b))) = 3.
Решение даёт значение оснований трапеции:
a = 12(√15 + 4) ≈ 94,4758.
b = -12(√15 - 4) ≈ 1,5242.
Находим радиус r вписанной окружности.
r = h/2 = √(ab)/2 = 6.
ответ: радиус равен 6.
1.BOA = DOE по первому признаку, т.к. BO=OD,AO=OE, угол BOA= угол EOD(вертикальные)
2. ABC=BCD по третьему признаку, т.к. AB=BD, AC=CD,BC-общая
3. OMN=QOR по второму признаку, т.к. NO=OQ, угол ONM=угол RQO, угол NOM= угол ROQ
4 DEC = DKC по первому признаку, т.к. DE=DK, DC-общая,угол EDC= угол KDC
5 RQH=RPH по первому признаку,т.к.угол RHQ = угол RHP, QH=HP, RH- общая
6. BAK=BMC. Чертим окружность из точки В, радиус которой равен BK и BM. BK=BM, AB=BC, AK= MC (по третьему признаку)
7. DCE=FEC по первому признаку,т.к. CF=DE, CED=FCE, CE- общая
8. ABD=BCD по второму признаку,т.к. ADB=CBD,ABD=BDC,BD-общая
9.KLN=LMN по третьему признаку,т.к.LK=MN,KN=LM,LN- общая