Лабораторна робота
з теми «Властивості прямокутного трикутника»
Мета роботи: вивчити властивості прямокутного трикутника.
Обладнання: лінійка, транспортир, набір трикутників.
Хід работи:
I. 1) Накресліть прямокутний треугольник трикутник АВС з прямим кутом А.
2) Допишіть рівність про суму кутів трикутника
∠А +∠В+∠С =
3) ∠А – прямий, тобто ∠А=, тоді ∠В+∠С=
4) Запишіть висновок : сума кутів прямокутного трикутника дорівнює
II. 1) Нарисуйте два прямокутних трикутника:
Сторона трикутника, яка лежить проти прямого кута називається
гіпотенузою.
Сторони, які утворюють прямий кут називають катетами.
2) Запишіть :
В ∆АВС: гіпотенуза, катети
В ∆DEF: гіпотенуза, катети
3) Виконайте вимірювання, результати запишіть
Дуга СD = 2 * ∠СBD = 2 * 27 = 54°
Дуга AD = 2 * ∠ACD = 2 * 54 = 108°
Дуга AB = 2 * ∠ADB = 2 * 62 = 124°
Дуга BC = 360 - (54 + 108 + 124) = 74°
∠АВС опирается на дугу ADC.
Дуга АDС = дуга АD + дуга СD = 108 + 54 = 162°
∠АВС = 162/2 = 81°
∠ВСD опирается на дугу ВAD.
Дуга ВАD = дуга АВ + дуга АD = 124 + 108 = 232°
∠ВСD = 232/2 = 116°
∠АDС опирается на дугу АВС.
Дуга АВС = дуга АВ + дуга ВС = 124 + 74 = 198°
∠АDС = 198/2 = 99°
Сумма углов четырехугольника = 360°, отсюда:
∠DАВ = 360 - (81 + 116 + 99) = 64°
В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Тогда S=0,5•{4√2):0,2588}²•0,5=≈ 119,426 см²