1)Докажем,что данный четырёхугольник является прямоугольником.
1)ST=(0+1;-2-0)=(1;-2)
2)RP=(-4+5;-4+2)=(1;-2)
3)PS=(-1+5;0+2)=(4;2)
4)PT=(0+4;-2+4)=(4;2)
Координаты векторов равны,следовательно будут равны и их длины.
Теперь докажем,что углы данного четырёхугольника равны по 90 градусов.Ведь прямоугольник это такой четырехугольник,у которого все углы по 90 градусов.
1)PS*ST=(4*1)+(2*(-2))=4-4=0
2)PT*ST=(4*1)+(2*(-2))=4-4=0 =>
Углы STP u TSP= 90 градусов.
Значит и противоположные углы равно по 90 градусов.Данный четырёхугольник — прямоугольник.
2)RT=PS как диагонали прямоугольника.Найдем их длины:
|RT|= V(0+5)^2 + (-2+2)^2
|RT| =V25
|RT|= 5
|PS|= 5
Вычислим и координаты:
PS= (-1+4;0+4)=(3;4)
TR=(-5-0;-2+2)=(-5;0)
Вычислим косинус по формуле:
сos a = (a(вектор) * b(вектор))/ |а| * |b| = cos a = PS*TR / |PS|*|TR| = 3*(-5)+4*0 / 5*5 = — 3/5 = —0,6.
3)S= |PR|* |PT|
|PR| = V(-5+4)^2 + (-2+4)^2 = V5
|PT| = V(0+4)^2 + (-2+4)^2 = V20
S= V5*V20= V100 = 10
Для справки:
Не забудьте поставить векторы(стрелки) над буквенными выражениями.
V — это обозначение корня.
^2 — это обозначение степени 2.
/ — это палочка,обозначающая дробное выражение.
1)Докажем,что данный четырёхугольник является прямоугольником.
1)ST=(0+1;-2-0)=(1;-2)
2)RP=(-4+5;-4+2)=(1;-2)
3)PS=(-1+5;0+2)=(4;2)
4)PT=(0+4;-2+4)=(4;2)
Координаты векторов равны,следовательно будут равны и их длины.
Теперь докажем,что углы данного четырёхугольника равны по 90 градусов.Ведь прямоугольник это такой четырехугольник,у которого все углы по 90 градусов.
1)PS*ST=(4*1)+(2*(-2))=4-4=0
2)PT*ST=(4*1)+(2*(-2))=4-4=0 =>
Углы STP u TSP= 90 градусов.
Значит и противоположные углы равно по 90 градусов.Данный четырёхугольник — прямоугольник.
2)RT=PS как диагонали прямоугольника.Найдем их длины:
|RT|= V(0+5)^2 + (-2+2)^2
|RT| =V25
|RT|= 5
|PS|= 5
Вычислим и координаты:
PS= (-1+4;0+4)=(3;4)
TR=(-5-0;-2+2)=(-5;0)
Вычислим косинус по формуле:
сos a = (a(вектор) * b(вектор))/ |а| * |b| = cos a = PS*TR / |PS|*|TR| = 3*(-5)+4*0 / 5*5 = — 3/5 = —0,6.
3)S= |PR|* |PT|
|PR| = V(-5+4)^2 + (-2+4)^2 = V5
|PT| = V(0+4)^2 + (-2+4)^2 = V20
S= V5*V20= V100 = 10
Для справки:
Не забудьте поставить векторы(стрелки) над буквенными выражениями.
V — это обозначение корня.
^2 — это обозначение степени 2.
/ — это палочка,обозначающая дробное выражение.
1) BC -?
2) (меньшая сторона) -?
1) AB/sin∠C =BC/sinA = AC/sin∠B = 2R (теорема синусов).
∠C =180° -(∠A +∠B )= 180° -(30° +105°) =45°.
16/sin45° =BC/sin30°⇒
BC =15*(sin30°/sin45°) =16*(1/2) / (1/√2) =(16√2)/2 =8√2≈11,28 (см).
---
2) меньшая сторона та, которая лежит против меньшего угла ,
эта сторона BC(лежит против меньшего угла ∠A=30°).
длину AC не требуется , но :
AC /sin∠B = AB/sin∠C ⇒AC =AB*sin(∠B)/(sin∠C)=
16* sin105°/(1/√2) =16√2sin105°=16√2*√2(√3 +1)/4 =8(√3 +1) .
sin105° =sin(180°-75°) =sin75°=sin(45°+30°) =...
или
sin105° =sin(60°+45°) =sin60°*cos45°+cos60°*sin45°=
(√3/2)*(√2/2)+(1/2)*(√2/2) =√2(√3 +1)/4.
* * * * * * * Второй
∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°.
Проведем высоту BH⊥AC (∠AHB=90°) ⇒ Прямоугольный треугольник BHC равнобедренный CH =BH ,т.к. ∠C =45°.
По теореме Пифагора из ΔBHC:
BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH BH=AB/2 =8(как катет против угла
∠A =30°). Значит BC =BH√2 =8√2.