1)у прямоугольника диагонали равны и прямоугольник это параллелограм из чего следует точка пересечения диагоналей(точка О) делит диагонали на 4 равных отрезка DO=OB=CO=AO из чего следует
треугольник АBO равнобедренный из чего следует что угол ABO = углу BAO = 36 из этого мы можем найти угол АОB = 180 - угол BAO - угол АBO = 180-72 =108
угол АОB = COD как вертикально аналогично с углами AOD и BOC
сумма 4 вертикальных углов 360 градусов из чего следует чтобы найти угол АОD нам надо (360-АОB-COD)/2=(360-216)/2=72градуса
2) у прямоугольной трапеции всегда 2 угла по 90 градусов и 20 градусов нам дан угол по условию а последний угол = 360-(первый угол+второй угол+третий угол) = 360-(90+90+20)=160
Сумма всех углов четырехугольника равна 360градусов
3) стороны параллелограма относятся 1:2 значит мы можем взять меньшую сторону за x, а большую за 2x
у параллеграма противоположные стороны равны и нам дан периметр из чего следует уравнение
x+x+2x+2x=30
6x=30
x=5
меньшая сторона равна 5
а большая следовательно 10
4)у параллелограма противоположные стороны параллельны!
нам дана биссектриса KE которая является секущей
MN и KP из чего следует что угол МЕK = углу EKP как накрест лежащие углы. Из чего следует треугольник KME равнобедренный, а по условию нам дана сторона KM =8 значит МЕ тоже равна 8
значит большая сторона параллелограма = МЕ + ЕN = 8+4=12
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
1)72градуса
2)20,90,90,160
3)5,10
4)40
Объяснение:
1)у прямоугольника диагонали равны и прямоугольник это параллелограм из чего следует точка пересечения диагоналей(точка О) делит диагонали на 4 равных отрезка DO=OB=CO=AO из чего следует
треугольник АBO равнобедренный из чего следует что угол ABO = углу BAO = 36 из этого мы можем найти угол АОB = 180 - угол BAO - угол АBO = 180-72 =108
угол АОB = COD как вертикально аналогично с углами AOD и BOC
сумма 4 вертикальных углов 360 градусов из чего следует чтобы найти угол АОD нам надо (360-АОB-COD)/2=(360-216)/2=72градуса
2) у прямоугольной трапеции всегда 2 угла по 90 градусов и 20 градусов нам дан угол по условию а последний угол = 360-(первый угол+второй угол+третий угол) = 360-(90+90+20)=160
Сумма всех углов четырехугольника равна 360градусов
3) стороны параллелограма относятся 1:2 значит мы можем взять меньшую сторону за x, а большую за 2x
у параллеграма противоположные стороны равны и нам дан периметр из чего следует уравнение
x+x+2x+2x=30
6x=30
x=5
меньшая сторона равна 5
а большая следовательно 10
4)у параллелограма противоположные стороны параллельны!
нам дана биссектриса KE которая является секущей
MN и KP из чего следует что угол МЕK = углу EKP как накрест лежащие углы. Из чего следует треугольник KME равнобедренный, а по условию нам дана сторона KM =8 значит МЕ тоже равна 8
значит большая сторона параллелограма = МЕ + ЕN = 8+4=12
найдем периметр = 12×2 + 8×2=40
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.