1) найдём гипотенузу по теореме Пифагора: с=√(24^2+18^2)=√(576+324)=√900= 30; 2) биссектриса проведена к катету, равному 18 ( против меньшей стороны лежит меньший угол); 3) биссектриса делит катет на две части х и у; х+у=18 (х - ближе к прямому углу); 4) биссектриса делит катет на пропорциональные части: 24:х=30:у 30х=24у 5х=4у у=5х/4 (1) х+у=18 (2) подставим из (1) в (2): 5х/4 + х=18 5х+4х=18*4 9х=18*4 х=2*4=8 5) по теореме Пифагора найдём биссектрису (L): L=√(24^2+8^2)=√(576+64)=√640=√64*10=8√10 ответ: 8√10
ΔADC - равнобедренный (по рис.) ⇒ ∠B = ∠D (по свойству равнобедр. треуг.).
Отрезок CK - медина (делит противолежащую сторону на две равные) является высотой (по свойству равнобедр. треуг.) ⇒ ∠CKB = 90°.
∠CBK + ∠CKB + ∠BCK = 180° (по свойству треуг.)
∠CBK + 90° + 30° = 180°
∠CBK = 180° - (90° + 30°)
∠CBK = 60°
∠CBK и ∠CBA - смежные ⇒ ∠CBK + ∠CBA = 180°
60° + ∠CBA = 180°
∠CBA = 120°
ответ: ∠CBA = 120°.
Задание 7
Дано:
ΔCAD - равнобедренный
CA = DA
CB = BD
Найти:
∠CBA - ?
ΔCAD - равнобедр. (по рис.)
⇒ Отрезок BA - медианой (делит противолежащую сторону на две равные), является высотой (по свойству равнобедр. треуг.) и образует углы (∠CBA и ∠DBA) в 90°.
⇒ ∠CBA = 90°
ответ: ∠CBA = 90°.
Задание 8
Дано:
ΔDBK - равнобедр.
DM = MK
DB = BK
∠K = 70°
Найти:
∠CBA - ?
ΔDBE - равнобедр. (по рис.)
BM - медиана (делит противолежащую сторону на две равные)
⇒ BM - биссектриса и высота (по свойству равнобедр. треуг.)
Задание 6
Дано:
ΔADC - равнобедренный
BK = KD
AC = CD
∠BCK = 30°
Найти:
∠CBA - ?
ΔADC - равнобедренный (по рис.) ⇒ ∠B = ∠D (по свойству равнобедр. треуг.).
Отрезок CK - медина (делит противолежащую сторону на две равные) является высотой (по свойству равнобедр. треуг.) ⇒ ∠CKB = 90°.
∠CBK + ∠CKB + ∠BCK = 180° (по свойству треуг.)
∠CBK + 90° + 30° = 180°
∠CBK = 180° - (90° + 30°)
∠CBK = 60°
∠CBK и ∠CBA - смежные ⇒ ∠CBK + ∠CBA = 180°
60° + ∠CBA = 180°
∠CBA = 120°
ответ: ∠CBA = 120°.
Задание 7
Дано:
ΔCAD - равнобедренный
CA = DA
CB = BD
Найти:
∠CBA - ?
ΔCAD - равнобедр. (по рис.)
⇒ Отрезок BA - медианой (делит противолежащую сторону на две равные), является высотой (по свойству равнобедр. треуг.) и образует углы (∠CBA и ∠DBA) в 90°.
⇒ ∠CBA = 90°
ответ: ∠CBA = 90°.
Задание 8
Дано:
ΔDBK - равнобедр.
DM = MK
DB = BK
∠K = 70°
Найти:
∠CBA - ?
ΔDBE - равнобедр. (по рис.)
BM - медиана (делит противолежащую сторону на две равные)
⇒ BM - биссектриса и высота (по свойству равнобедр. треуг.)
⇒ ∠BME = 90°.
∠K + ∠BME + ∠MBE = 180° (по свойству треуг.)
⇒ 70° + 90° + ∠MBE = 180°
∠MBE = 180° - (70° + 90°)
∠MBE = 20°
Т.к. BM - биссектриса, то ∠DBE = 2∠MBE = 40°
∠DBE и ∠CBA - вертикальные
⇒ ∠DBE = ∠CBA = 40°
ответ: ∠CBA = 40°.