Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
Нехай січна АВ перетинає прямі а і б так, що утворилися при цьому внутрішні накрет лежачі кути 1 і 3 рівні. тоді, як правило показано вище, кути 2 і 4 теж рівні. допустимо, що за такої умови прямі а і б перетинаються в якійсь віддаленій точці С. в результаті утворюється трикутник АВС. уявімо, що цей трикутник повернули навколо точки О - середини відрізка АВ - так, що відрізок ОА зайняв положення ОВ. тоді, оскільки кут 1 = кутку 3, а кут 2 = кутку 4, промінь АС поєднатися з променем ВК, а промінь ВС з променем АР. так як промені АС і ВС мають спільну точку С. це означає, що промені ВК і АР теж мають якусь загальну точку С 1. це означає, що через дві точки С і С1 проведені дві прямі. а цього не може бути. таким чином, якщо кут 1 = кутку 3, то прямі а і б НЕ могул перетинатися, а це значить що вони паралельні: а || б
AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
ответ: АВ=10 см, ВС=6 см.