М нүктесі CD түзуінің С және D нүктелері арасында жатады.Егер: 1)СМ=2.5 см,МD=3.5 см;2)СМ=3.1 дм,MD=4.6 дм;3)СМ=12.3 м, MD=5.8 м болма,онда CD кесіндісінің ұзындығын табыңдар.Өтініш көмек керек
α-тупой угол, диагональ АС разбивает параллелограмм на два равных треугольника, в треугольнике АВС есть три угла α;β; (180-(α+β)); sin(180-(α+β))=sin(α+β)=sinα*cosβ+sinβ*cosα
Углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными, а углы 3 и 6, 4 и 5 называются односторонними (см. рисунок). Заметим, что в таком случае углы 2 и 6 равны: ∠2 = ∠6.
По условию разность двух односторонних углов, то есть ∠6 и ∠3, при пересечении двух параллельных секущей равна 50 градусам:
∠6 - ∠3 = 50°. Тогда по замечанию ∠2 - ∠3 = ∠6 - ∠3 = 50°.
α-тупой угол, диагональ АС разбивает параллелограмм на два равных треугольника, в треугольнике АВС есть три угла α;β; (180-(α+β)); sin(180-(α+β))=sin(α+β)=sinα*cosβ+sinβ*cosα
cosβ=√(1-sin²β)=√(1-64/289)=√(225/289)=15/17;
cosα=-√(1-sin²α)=-√(1-144/169)=-√(25/169)=-5/13;
sin(α+β)=(12/13)*(5/17)-(8/17)*(5/13)=(60-40)/(17*13)=20/(17*13);
По следствию из теоремы синусов АС/sin(180-(α+β))=BC/sinα=AB/sinβ;
5/(20/17*13)= BC/sinα; BC=5*17*13*12/(13*20)=51
5/(20/17*13)=AB/sinβ; АВ=5*17*13*8/(17*20)=26
Значит, площадь равна АВ*АС*sin(α+β)=51*26*(20/17*13)=120
ответ 120,00
Посмотрел на задание, которое Вам предложили в качестве решения в комментариях. Проверил. ответ тот же. )
Объяснение:
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
3,4/5
11
axatar
65° и 115°
Объяснение:
Углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными, а углы 3 и 6, 4 и 5 называются односторонними (см. рисунок). Заметим, что в таком случае углы 2 и 6 равны: ∠2 = ∠6.
По условию разность двух односторонних углов, то есть ∠6 и ∠3, при пересечении двух параллельных секущей равна 50 градусам:
∠6 - ∠3 = 50°. Тогда по замечанию ∠2 - ∠3 = ∠6 - ∠3 = 50°.
Но углы 2 и 3 смежные и поэтому ∠2 + ∠3 = 180°
Имеем систему равенств:
∠2 - ∠3 = 50° (1)
∠2 + ∠3 = 180° (2)
Из уравнения (1) выразим ∠2 через ∠3:
∠2 = 50° + ∠3
Подставим выражение ∠2 в (2):
50° + ∠3 + ∠3 = 180° или
2·∠3 = 180° - 50° или
2·∠3 = 130° или
∠3 = 130° : 2 = 65°.
Тогда ∠2 = 50° + ∠3 = 50° + 65° = 115°
ответ: 65° и 115°