Ma — перпендикуляр до площини паралелограма abcd, o — середина bd і mo ⊥ bd. 1) визначте вид паралелограма abcd. 2) знайдіть відстань від точки m до площини паралелограма, якщо ∠adc = 60°, ad = 24 см, mo = 13 см.
треугольник нок равнобедренный он=ок=радиусу=1, проводим высоту ор на нк, угол онк=углуокн=(180-120)/2=30, треугольник окр прямоугольный, ор=1/2 ок - лежит напротив угла 30, ор = 1/2=0,5, нр=рк= корень (ок в квадрате - ор в квадрате) =
=корень( 1-0,25) = 0,5 х корень3, нк =нр+рк= 2 х 0,5 х корень3 =корень3
треугольник анк равнобедренный ан=ак как касательные к окружности. проведенные из одной точки, угол анк=углуакн = (180-60)/2=60, треугольник анк равносторонний углы=60, значит ак=ан=нк=корень3
воспользуемся следующий признаокм: " если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны".
треугольник авс - равнобедренный.
отсюда следует, что медиана bd - также является биссектрисой угла авс. то есть угол mbd = углу dbn.
по условию bm = bn. bd - общая сторона.
таким образом треугольники mbd = треугольнику dbn по двум сторонам и углу между ними.
ответ:
треугольник авс, о -центр, он радиус перпендикулярный ав в точке касания, ок радиус перпендикулярный ас в точке касания,
четырехугольник анок, угол ано+углуако=90, угола=60, угол нок = 360-90-90-60=120
треугольник нок равнобедренный он=ок=радиусу=1, проводим высоту ор на нк, угол онк=углуокн=(180-120)/2=30, треугольник окр прямоугольный, ор=1/2 ок - лежит напротив угла 30, ор = 1/2=0,5, нр=рк= корень (ок в квадрате - ор в квадрате) =
=корень( 1-0,25) = 0,5 х корень3, нк =нр+рк= 2 х 0,5 х корень3 =корень3
треугольник анк равнобедренный ан=ак как касательные к окружности. проведенные из одной точки, угол анк=углуакн = (180-60)/2=60, треугольник анк равносторонний углы=60, значит ак=ан=нк=корень3
расстояние=корень3
наверно такое было надо решить?
объяснение:
ответ:
докажем, что треугольники mbd = треугольнику dbn.
воспользуемся следующий признаокм: " если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны".
треугольник авс - равнобедренный.
отсюда следует, что медиана bd - также является биссектрисой угла авс. то есть угол mbd = углу dbn.
по условию bm = bn. bd - общая сторона.
таким образом треугольники mbd = треугольнику dbn по двум сторонам и углу между ними.
если треугольники равны, то и все стороны равны.
отсюда получаем, что dm = dn.
что и требовалось доказать.
объяснение: