Медиана CD треугольника ABC образует со сторонами ACи BC углы 30∘ и 15∘соответственно, BC=52.Найдите медиану CD. ответ запишите в виде целого числа или конечной десятичной дроби.
Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
Дан треугольник с вершинами в точках А (4; 1), B (7; 5) и с (-4; 7).
Находим:
а) длину медианы, проведенной из вершины В;
Расчет длин сторон Квадрат
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = 5 25
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = 11,18033989 125
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = 10 100.
Как видим, треугольник прямоугольный.
Основания медиан (точки пересечения медиан со сторонами).
А₁(Ха1;Уа1) Хв+Хс Ув+Ус х у
2 2 А₁ 1,5 6
В₁(Хв1;Ув1) Ха+Хс Уа+Ус х у
2 2 В₁ 0 4
C₁(Хс1;Ус1) Ха+Хв Уа+Ув х у
2 2 С₁ 5,5 3.
Длины медиан:
АА₁ = √((Ха1-Ха)²+(Уа1-Уа)²)) = 5,590169944.
BB₁ = √((Хв1-Хв)²+(Ув1-Ув)²)) = 7,071067812.
CC₁ = √((Хc1-Хc)²+(Уc1-Уc)²)) = 10,30776406.
б) длину биссектрисы, проведенной из вершины А;
Длина биссектрисы:
АА₃ = √(АВ*АС*((АВ+АС)²-ВС²)) = 4,714045208
АВ+АС
в) координаты точки пересечения медиан это центр вписанной окружности;
Находим периметр: Р = 26,18034
Х =
ВС*Ха+АС*Хв+АВ*Хс = 3,618033989.
Р
Y =
ВС*Уа+АС*Yв+АВ*Ус = 3,673762079.
Р
г) косинус внутреннего угла при вершине С.
cos C= АC²+ВС²-АВ²
2*АC*ВС = 0,894427191
C = 0,463647609 радиан
C = 26,56505118 градусов