В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Юліан11
Юліан11
17.03.2021 11:09 •  Геометрия

Менша бічна сторона прямокутної трапеції дорівнює 83 см, а гострий кут 60. Знайдіть площу трапеції, якщо відомо, що в неї можна вписати коло.

Показать ответ
Ответ:
ep0977912721
ep0977912721
21.04.2022 01:49

10. Площа трикутника дорівнює добутку радіусу r  вписаного кола і полупериметра р. 

r=(a+b-c):2 , де а та b -  катети,  c -гіпотенуза. 

a+b=P-с=60-c 

r=(60-c-c):2=30-c 

Також r=S:p; тоді

S=h*c:2

S=12*c:2=6c

р=60:2=30

r=6c/30=c/5 

Отже

c/5=30-c

150-5c=c

6c=150

c=25 см

r=25/5=5 см

S=r*p=5*30=150 см².
Відповідь: 150 см²


12. Нехай дано трикутник АВС - прямокутний, ∠ А - 90°, ВС - гіпотенуза. ВС=32+18=50 см.

АН - висота. 

Площа трикутника дорівнює 1\2 * ВС * АН.

АН=√(ВН*СН)=√(32*18)=√576=24 см.

S = 1\2 * 50 * 24 = 600 cм²

Відповідь: 600 см²

0,0(0 оценок)
Ответ:
maslyuk05
maslyuk05
12.01.2023 01:57
Дана правильная треугольная пирамида. Примем ребро основания за 1.
Проведём осевое сечение пирамиды через боковое ребро.
Для правильной треугольной пирамиды центр основания совпадает с проекцией вершины на основание и точкой пересечения медиан основания (а также высот и биссектрис).
Заданный отрезок прямой, соединяющей центр основания правильной треугольной пирамиды с серединой бокового ребра и равный стороне основания, - это медиана прямоугольного треугольника.
Поэтому боковое ребро как гипотенуза в 2 раза больше этого отрезка, то есть равно 2.
Проекция бокового ребра на основание равна (2/3) высоты основания или равно (2/3)*1*cos 30° = (2√3)/(3*2) = √3/3.
Высота основания равна: h = a*cos30° = √3/2.
Косинус угла α наклона бокового ребра к основанию равен:
cos α = (√3/3)/2 = √3/6.
Синус этого угла равен:
sin α = √(1 - (√3/6)²) = √(1-(3/36) = √33/6.
Опустим перпендикуляр из середины ребра основания на боковое ребро. Это будет высота h в равнобедренном треугольнике сечения, перпендикулярном боковому ребру. Угол между его боковыми сторонами и будет искомым углом β между смежными гранями.
Высота h сечения равна произведению высоты основания на синус α.
h = (√3/2)*(√33/6) = √99/12 =√11/4.
Боковые стороны в треугольника перпендикулярного сечения равны:
в = √((а/2)² + h²) = √((1/4) + (11/16)) = √15/4.
Искомый угол β между гранями находим по теореме косинусов:
cos β = (√15/4)² + (√15/4)² - 1²)/(2*(√15/4)*(√15/4)) = 14/30 = 7/15.
Этому косинусу соответствует угол  1,085278 радиан или 62,18186°. 

Этот же угол можно было определить через двойной угол, тангенс которого равен отношению половины стороны основания к высоте h.
β = 2arc tg((1/2)/(√11/4)) = 2arc tg(2√11/11).
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота