Меньшая сторона основания прямоугольного параллелепипеда равна 7 м, а высота параллелепипеда равна 24 м. Вычисли длину диагонали параллелепипеда, если она с меньшей боковой гранью образует угол 60°.
Площадь полной поверхности призмы равна сумме площадей двух её оснований и площади боковой поверхности.
Боковые грани прямой призмы - прямоугольники. Площадь боковой поверхности равна периметру основания, умноженному на высоту призмы.
S=P•h=(10+12+20)•3=126 (ед. площади)
Площадь основания - площадь трапеции АВСD.
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=(АD-BC):2=8:2=4
НВ=(AD+DC):2=32:2=16
Из ∆ АВН по т.Пифагора ( или обратив внимание на то, что ∆ АВН - египетский) находим ВН=3
1) Рисуем пирамиду. В основании квадрат. Вершина М. Проекция вершины точка О- точка пересечения диагоналей квадрата. Тогда проекции отрезков АМ,ВМ,СМ и ДМ равны, как половинки равных диагоналей АО=ОВ=ОС=ОД. Значит и отрезки АМ,ВМ,СМ,ДМ равны. Точка М равноудалена от вершин квадрата Из прямоугольного треугольника АМО по теореме Пифагора МО²=АМ²-АО² ответ МО=8
2) векторы перпендикулярны если их скалярное произведение равно нулю. Векторы заданы координатами. Скалярное произведение равно сумме произведений попарных координат n·5+2·(-2)+0,5·(-2)=0 5n-4-1=0 5n=5 n=1
3) Боковая поверхность правильной четырехугольной пирамиды состоит из площадей четырех треугольников. В основании пирамиды лежит квадрат, обозначим его сторону х м, периметр квадрата по условию равен 1 м, значит 4х=1, х=0,25 м Площадь треугольника равна половине произведения основания на высоту (апофему) Таких треугольников 4 Итак, боковая поверхность равна 4· 1/2· 0,25 ·0,25 (кв. м)=0,125 кв м
Площадь полной поверхности призмы равна сумме площадей двух её оснований и площади боковой поверхности.
Боковые грани прямой призмы - прямоугольники. Площадь боковой поверхности равна периметру основания, умноженному на высоту призмы.
S=P•h=(10+12+20)•3=126 (ед. площади)
Площадь основания - площадь трапеции АВСD.
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=(АD-BC):2=8:2=4
НВ=(AD+DC):2=32:2=16
Из ∆ АВН по т.Пифагора ( или обратив внимание на то, что ∆ АВН - египетский) находим ВН=3
S осн=3•16=48 Оснований у призмы 2.
S полн=126+2•48=222 (ед. площади)
Из прямоугольного треугольника АМО по теореме Пифагора МО²=АМ²-АО²
ответ МО=8
2) векторы перпендикулярны если их скалярное произведение равно нулю. Векторы заданы координатами. Скалярное произведение равно сумме произведений попарных координат
n·5+2·(-2)+0,5·(-2)=0
5n-4-1=0
5n=5
n=1
3) Боковая поверхность правильной четырехугольной пирамиды состоит из площадей четырех треугольников. В основании пирамиды лежит квадрат, обозначим его сторону х м, периметр квадрата по условию равен 1 м, значит 4х=1, х=0,25 м
Площадь треугольника равна половине произведения основания на высоту (апофему)
Таких треугольников 4
Итак, боковая поверхность равна 4· 1/2· 0,25 ·0,25 (кв. м)=0,125 кв м