Мистер Фокс нарисовал на бумаге выпуклую ломаную DROF и записал длины сторон и значения углов: DR = 8 ,RO = 5 ,OF = 6 , ∠ DRO = 100, ∠ROF = 110. Он измерил линейкой расстояние DF и по Мистера Форда найти это расстояние, не используя линейку Мистеру Форду найти длину отрезка DF , если Мистер Фокс разрешил ему пользоваться калькулятором и таблицами Брадиса. Между какими последовательными целыми числами находится длина отрезка DF ?
Объяснение:
1Так как сторона Co=od=ao=Bo и угол BOC и угол AOD Вертикальные следовательно углы равны по двум сторонам и углу между ними
2 так как BA=AD, Угол BAC=УГЛУ AD, И СТОРОНА A общая следовательно треугольники равны по 2 сторонам и углу между ними
3. Угол 2 вертикален углу bda, угол 1 вертикален углу cbd, bdобщая, и ad=bc поэтому треугольники равны по 2 сторонам и углу между ними
4. Ac общая Ab=CD, Угол acd равен углу BAC. Поэтому треугольники равны по 2 сторонам и угу между ними.
5. Ac=bd, угол acd= углу bdc. DC общая поэтому углы равны по 2 сторонам и углу между ними
6. Угол 1 равен углу 2, они смежные следовательно угол cdo=углу abo, bo=od, ab=CD поэтому треугольники равны по 2 сторонам и углу между ними
Объяснение:
Медиана, проведенная к основанию равнобедренного треугольника равна высоте.
Из формулы вычисления площади треугольника находим длину основания:
S=a*h/2
a=2S/h=2*432/18=48 см;
выразим площадь через стороны треугольника по формуле Герона.
S=√(р(р-а)*(р-в)*(р-с)), где р - полупериметр, а, в, с - стороны треугольника.
Боковые стороны в равнобедренном треугольнике равны;
обозначим длину боковой стороны - в,
тогда периметр будет равен Р=(2в+48),
полупериметр р=(2в+48)/2=(в+24),
площадь будет равна: S=√(р*(р-в)*(р-в)*(р-48))=24√(в²-24²)=432;
в=30 см - боковая сторона.