MN - хорда кола з центром у точці О, P - середина MN. У цьому колі проведено радіуси ON і OK, який проходить через точку P. кут KNP=35. Знайдіть кути трикутника PNO
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
Объяснение:
Решение
Первый Пусть указанные стороны равны a и 2a. Тогда по теореме косинусов квадрат третьей стороны равен
a2 + 4a2 - 2a . 2a . $\displaystyle {\textstyle\frac{1}{2}}$ = 3a2.
Пусть $ \alpha$ — угол данного треугольника, лежащий против стороны, равной 2a. Тогда по теореме косинусов
cos$\displaystyle \alpha$ = $\displaystyle {\frac{a^{2} + 3a^{2} - 4a^{2}}{2a\cdot a\sqrt{3}}}$ = 0.
Следовательно, $ \alpha$ = 90o.
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
BC1 = $\displaystyle {\textstyle\frac{1}{2}}$AB = BC.
Значит, точка C1 совпадает с точкой C. Следовательно, $ \angle$ACB = 90o.
Решение
1. ∢ D=0,5 ∪ EF=30 ° (по свойству вписанного угла).
2. ∢ Е=90 ° (т. к. опирается на диаметр);
cosD= прилежащий катетгипотенуза=DEFD ;
cos30 ° = 3–√2 ;
3–√2 = 1FD ;
3–√ FD = 2⋅1 ;
FD = 23–√ (умножаем на 3–√ , чтобы избавиться от иррациональности в знаменателе);
FD = 2⋅3–√3 см;
2R= FD = 2⋅3–√3 см;
3. C=2R π ;
C= 2⋅3–√3 π см.
4. Подставляем π ≈ 3 :
C= 2⋅3–√3⋅3 ;
C= 2⋅3–√ ;
C= 3,46 см.
ответ: 3.46 см