В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас
Номер 73
Боковая сторона Х
Основание Х-8
Х+Х+Х-8=28
ЗХ=28+8
ЗХ=36
Х=36:3
Х=12
Каждая боковая сторона равна 12 см
Основание равно 12-8=4 см
Проверка
12•2+4=28 см
Номер 74
Основание Х
Боковая сторона 3Х
Х+3Х+3Х=84
7Х=84
Х=84:7
Х=12
Основание 12 см
Каждая боковая сторона 12•3=36 см
Проверка
36•2+12=84 см
Номер 75
Судя по чертежу,треугольник АВС равнобедренный,т к АВ=ВС
В равнобедренном треугольнике углы при основании равны между собой,т е
<ВАС=<ВСА
Углы 1 и 2 являются внешними углами.Сумма внешнего угла и смежного ему внутреннего равна 180 градусов
<1=180-<ВАС
<2=180-<ВСА,а как известно,<ВАС=<ВСА
Поэтому <1=<2
Объяснение: